DOI QR코드

DOI QR Code

1,3-Dioxolane-Based CO2 Selective Polymer Membranes for Gas Separation

1,3-Dioxolane 기반 CO2 선택성 고분자막의 개발

  • Iqubal Hossain (Department of Energy Engineering, Hanyang University) ;
  • Asmaul Husna (Department of Energy Engineering, Hanyang University) ;
  • Ho Bum Park (Department of Energy Engineering, Hanyang University)
  • Received : 2023.06.12
  • Accepted : 2023.06.22
  • Published : 2023.06.30

Abstract

1,3-Dioxolane is an exciting material that has attracted widespread interest in the chemical, paint, and pharmaceutical industries as a solvent, electrolyte, and reagent because 1,3-dioxolane is not toxic, carcinogenic, explosive, auto-flammable, and multifunctional, and due to their excellent miscibility in most organic and aqueous solvent conditions. Recently, this material has received increasing attention as a CO2-selective polymer precursor to separating CO2 from flue gas and natural gas mixtures. Poly(1,3-dioxolane) (PDXL) possesses higher ether oxygen content than polyethylene oxide (PEO), which demonstrates superior membrane CO2/N2 separation properties owing to their polar ether oxygen groups exhibiting strong affinity toward CO2. Thus, PDXL-based membranes displayed an outstanding CO2 solubility selectivity over non-polar (N2, H2, and CH4) gases. However, the polar groups of PDXL, like PEO, promote chain packing efficiency and cause polymer crystallization, thereby reducing its gas permeability, which should be improved. In this short review, we discuss the recent advancement and limitations of PDXL membranes in gas separation applications. To conclude, we provide future perspectives for inhibiting the limits of 1,3-dioxolane-based polymers in the CO2 separation process.

1,3-다이옥솔란은 용매, 전해질 및 시약으로서 화학, 페인트 및 제약 산업에서 광범위한 관심을 받고 있는 화합물이다. 1,3-dioxolane은 주로 독성, 발암성, 폭발성, 자동 인화성이 없으며 다기능성을 가지고 있어, 대부분의 유기 및 수성 용매 조건에서 우수한 용해성을 가져 고분자 전구체로서 사용된다. 최근 몇 년 동안 이 물질은 배가스 및 천연 가스 혼합물에서 CO2를 분리하기 위한 CO2 선택적 고분자 전구체로서 점점 더 많은 관심을 받고 있다. Poly(1,3-dioxolane) (PDXL)은 폴리에틸렌 옥사이드(PEO)보다 높은 에테르 산소 함량을 가지고 있으며, 이는 극성 에테르 산소 그룹이 CO2에 대해 강한 친화력을 나타내기 때문에 우수한 막 CO2/N2 분리 특성을 보인다. 따라서 PDXL 기반 분리막은 비극성(N2, H2 및 CH4) 가스에 대해 탁월한 CO2 용해도 선택성을 보인다. 그러나 PEO와 마찬가지로 PDXL의 극성기는 고분자 사슬의 밀집도를 증가시키고 고분자 결정화를 유발하여 기체 투과도를 감소시켜 이에 대한 개선이 필요하다. 이 논문에서는 기체 분리 응용 분야에서 PDXL기반 고분자막의 최근 발전과 한계에 대해 알아보고자 한다. 또한 CO2 분리 공정에서 1,3-dioxolane 기반 고분자의 한계를 극복하기 위한 몇 가지 분자 설계방안에 대해 다루어 보기로 한다.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2022R1A5A1032539)

References

  1. N. Du, H. B. Park, M. M. Dal-Cin, and M. D. Guiver, "Advances in high permeability polymeric membrane materials for CO2 separations", Energy Environ. Sci., 5, 7306-7322 (2012). https://doi.org/10.1039/C1EE02668B
  2. T. H. Lee, A. Ozcan, I. Park, D. Fan, J. K. Jang, P. G. M. Mileo, S. Y. Yoo, J. S. Roh, J. H. Kang, B. K. Lee, Y. H. Cho, R. Semino, K. H. Won, G. Maurin, and H. B. Park, "Disclosing the role of defect-engineered metal-organic frameworks in mixed matrix membranes for efficient CO2 separation: A joint experimental-computational exploration", Adv. Funct. Mater., 31, 2103973 (2021).
  3. A. Husna, I. Hossain, O. Choi, S. M. Lee, and T.-H. Kim, "Efficient CO2 separation using a PIM-PI-functionalized UiO-66 MOF incorporated mixed matrix membrane in a PIM-PI-1 Polymer", Macromol. Mater. Eng., 306, 2100298 (2021).
  4. I. Hossain, S. Park, A. Husna, Y. Kim, H. Kim, and T.-H. Kim, "PIM-PI-1 and poly(ethylene glycol)/poly(propylene glycol)-based mechanically robust copolyimide membranes with high CO2-selectivity and an anti-aging property: A joint experimental-computational exploration", ACS Appl. Mater. Interfaces, 13, 49890-49906 (2021). https://doi.org/10.1021/acsami.1c14034
  5. H. B. Park, J. Kamcev, L. M. Robeson, M. Elimelech, and B. D. Freeman, "Maximizing the right stuff: The trade-off between membrane permeability and selectivity", Science, 356, 1138-1148 (2017).
  6. H. W. Kim, H.W. Yoon, S. Yoon, B. M. Yoo, B. K. Ahn, Y. H. Cho, H. J. Shin, H. Yang, U. Paik, S. Kwon, S. Kwon, J.-Y. Choi, and H. B. Park, "Selective gas transport through few-layered graphene and graphene oxide membranes", Science, 342, 91-95 (2013). https://doi.org/10.1126/science.1236098
  7. I. Hossain, A. Husna, I. Jeong, and T. -H. Kim, "Biphenyl(isatin-co-trifluoroacetophenone)-based copolymers synthesized using the Friedel-Crafts reaction as mechanically robust membranes for efficient CO2 separationnes for efficient CO2 separation", ACS Appl. Polym. Mater., 4, 3779-3790 (2022). https://doi.org/10.1021/acsapm.2c00264
  8. I. Hossain, D. Kim, A. Z. Al Munsur, J. M. Roh, H. B. Park, and T. -H. Kim, "PEG/PPG-PDMS-based crosslinked copolymer membranes prepared by ROMP and in situ membrane casting for CO2 separation: An approach to endow rubbery materials with properties of rigid polymers", ACS Appl. Mater. Interfaces, 12, 27286-27299 (2020). https://doi.org/10.1021/acsami.0c06926
  9. I. Hossain, A. Husna, S. Chaemchuen, F. Verpoort, and T. -H. Kim, "Crosslinked mixed-matrix membranes using functionalized UiO-66-NH2 into PEG/PPG-PDMS-based rubbery polymer for efficient CO2 separation", ACS Appl. Mater. Interfaces, 12, 57916-57931 (2020). https://doi.org/10.1021/acsami.0c18415
  10. I. Hossain, A. Z. Al Munsur, O. Choi, and T. -H. Kim, "Bisimidazolium PEG-mediated crosslinked 6FDA-durene polyimide membranes for CO2 separation", Sep. Purif. Technol., 224, 180-188 (2019). https://doi.org/10.1016/j.seppur.2019.05.014
  11. I. Hossain, S. Y. Nam, C. Rizzuto, G. Barbieri, E. Tocci, and T. -H. Kim, "PIM-polyimide multiblock copolymer-based membranes with enhanced CO2 separation performances", J. Membr. Sci., 574, 270- 281 (2019). https://doi.org/10.1016/j.memsci.2018.12.084
  12. Y. Weng, Q. Li, J. Li, Z. Gao, L. Zou, and X. Ma, "Facile synthesis of Bi-functionalized intrinsic microporous polymer with fully carbon backbone for gas separation application", Sep. Purif. Technol., 279, 119681 (2021).
  13. W. J. Koros and G.. Fleming, "Membrane-based gas separation", J. Membr. Sci., 83, 1-80 (1993). https://doi.org/10.1016/0376-7388(93)80013-N
  14. R. W. Baker and K. Lokhandwala, "Natural gas processing with membranes: An overview", Ind. Eng. Chem. Res., 47, 2109-2121 (2008). https://doi.org/10.1021/ie071083w
  15. L. M. Robeson, "Correlation of separation factor versus permeability for polymeric membranes", J. Membr. Sci., 62, 165-185 (1991). https://doi.org/10.1016/0376-7388(91)80060-J
  16. L. M. Robeson, "The upper bound revisited", J. Membr. Sci., 320, 390-400 (2008). https://doi.org/10.1016/j.memsci.2008.04.030
  17. B. Comesana-Gandara, J. Chen, C. G. Bezzu, M. Carta, I. Rose, M. C. Ferrari, E. Esposito, A. Fuoco, J. C. Jansen, and N. B. McKeown, "Redefining the robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity", Energy Environ. Sci., 12, 2733-2740 (2019). https://doi.org/10.1039/C9EE01384A
  18. H. B. Park, S. H. Han, C. H. Jung, Y. M. Lee, and A. J. Hill, "Thermally rearranged (TR) polymer membranes for CO2 separation", J. Membr. Sci., 359, 11-24 (2010). https://doi.org/10.1016/j.memsci.2009.09.037
  19. H. B. Park, C. H. Jung, Y. M. Lee, A. J. Hill, S. J. Pas, S. T. Mudie, E. Van Wagner, B. D. Freeman, and D. J. Cookson, "Polymers with cavities tuned for fast selective transport of small molecules and ions", Science, 318, 254-258 (2007). https://doi.org/10.1126/science.1146744
  20. B. S. Ghanem, N. B. McKeown, P. M. Budd, J. D. Selbie, and D. Fritsch, "High-performance membranes from polyimides with intrinsic microporosity", Adv. Mater., 20, 2766-2771 (2008). https://doi.org/10.1002/adma.200702400
  21. R. S. Prabhakar, B. D. Freeman, and I. Roman, "Gas and vapor sorption and permeation in poly (2,2,4-trifluoro-5-trifluoromethoxy-1,3-dioxole-cotetrafluoroethylene)", Macromolecules, 37, 7688-7697 (2004). https://doi.org/10.1021/ma048909f
  22. Y. Okamoto, H.-C. Chiang, M. Fang, M. Galizia, T. Merkel, M. Yavari, H. Nguyen, and H. Lin, "Perfluorodioxolane polymers for gas separation membrane applications", Membranes, 10, 394-407 (2020). https://doi.org/10.3390/membranes10120394
  23. B. S. Ghanem, R. Swaidan, E. Litwiller, and I. Pinnau, "Ultra-microporous triptycene-based polyimide membranes for high-performance gas separation", Adv. Mater., 26, 3688-3692 (2014). https://doi.org/10.1002/adma.201306229
  24. A. Car, C. Stropnik, W. Yave, and K. V. Peinemann, "PEG modified poly(amide-b-ethylene oxide) membranes for CO2 separation", J. Membr. Sci., 307, 88-95 (2008). https://doi.org/10.1016/j.memsci.2007.09.023
  25. W. Yave, H. Huth, A. Car, and C. Schick, "Peculiarity of a CO2-philic block copolymer confined in thin films with constrained thickness: "A super membrane for CO2-capture"", Energy Environ. Sci., 4, 4656-4661 (2011). https://doi.org/10.1039/c1ee02139g
  26. V. I. Bondar, B. D. Freeman, and I. Pinnau, "Gas transport properties of poly (ether-b-amide) segmented", J. Polym. Sci. Part B Polym. Physics, 38, 2051-2062 (2000). https://doi.org/10.1002/1099-0488(20000801)38:15<2051::AID-POLB100>3.0.CO;2-D
  27. X. Jiang, S. Li, and L. Shao, "Pushing CO2-philic membrane performance to the limit by designing semi-interpenetrating networks (SIPN) for sustainable CO2 separations", Energy Environ. Sci., 10, 1339-1344 (2017). https://doi.org/10.1039/C6EE03566C
  28. C. H. Lau, S. Liu, D. R. Paul, J. Xia, Y. C. Jean, H. Chen, L. Shao, and T. S. Chung, "Silica nanohybrid membranes with high CO2 affinity for green hydrogen purification", Adv. Energy Mater., 1, 634-642 (2011). https://doi.org/10.1002/aenm.201100195
  29. S. Wang, Y. Xie, G. He, Q. Xin, J. Zhang, L. Yang, Y. Li, H. Wu, Y. Zhang, M. D. Guiver, and Z. Jiang, "Graphene oxide membranes with heterogeneous nanodomains for efficient CO2 separations", Angew. Chem. Int. Ed., 56, 14246-14251 (2017). https://doi.org/10.1002/anie.201708048
  30. J. Liu, S. Zhang, D. en Jiang, C. M. Doherty, A. J. Hill, C. Cheng, H. B. Park, and H. Lin, "Highly polar but amorphous polymers with robust membrane CO2/N2 separation performance", Joule, 3, 1881-1894 (2019). https://doi.org/10.1016/j.joule.2019.07.003
  31. J. Liu, G. Zhang, K. Clark, and H. Lin, "Maximizing ether oxygen content in polymers for membrane CO2 removal from natural gas", ACS Appl. Mater. Interfaces, 11, 10933-10940 (2019). https://doi.org/10.1021/acsami.9b01079
  32. G. Yang, Y. Zhai, J. Yao, S. Song, L. Lin, W. Tang, Z. Wen, N. Hu, and L. Lu, "Synthesis and properties of poly(1,3-dioxolane)in situ quasi-solid-state electrolytesviaa rare-earth triflate catalyst", Chem. Commun., 57, 7934-7937 (2021). https://doi.org/10.1039/D1CC02916A
  33. H. Li, C. Wu, Q. Zhang, X. Li, and X. Gao, "Synthesis of 1,3-dioxolane from aqueous formaldehyde solution and ethylene glycol: Kinetics and reactive distillation", Ind. Eng. Chem. Res., 58, 7025-7036 (2019). https://doi.org/10.1021/acs.iecr.9b00331
  34. A. Abdelkhalik, E. Askar, D. Markus, T. Stolz, E. Brandes, and S. Zakel, "Explosion regions of 1,3-dioxolane/nitrous oxide and 1,3-dioxolane/air with different inert gases - Experimental data and numerical modelling", J. Loss Prev. Process Ind., 71, 104496 (2021).
  35. N. Yabueng and S. C. Napathorn, "Toward nontoxic and simple recovery process of poly(3-hydroxybutyrate) using the green solvent 1,3-dioxolane", Process Biochem., 69, 197-207 (2018). https://doi.org/10.1016/j.procbio.2018.02.025
  36. G. Carrera, L. Vegue, M. R. Boleda, and F. Ventura, "Simultaneous determination of the potential carcinogen 1,4-dioxane and malodorous alkyl1,3-dioxanes and alkyl-1,3-dioxolanes in environmental waters by solid-phase extraction and gas chromatography tandem mass spectrometry", J. Chromatogr. A., 1487, 1-13 (2017). https://doi.org/10.1016/j.chroma.2017.01.015
  37. A. L. Gemal and J. Luche, "Lanoids in organic synthesis. 4 Selective ketalization and reduction of carbonyl groups", J. Org. Chem., 44, 4187-4189 (1979). https://doi.org/10.1021/jo01337a038
  38. H. B. Kucuk, A. Yusufoglu, E. Mataraci, and S. Dosler, "Synthesis and biological activity of new 1,3-dioxolanes as potential antibacterial and antifungal compounds", Molecules, 16, 6806-6815 (2011). https://doi.org/10.3390/molecules16086806
  39. N. Nguyen-ba, N. Lee, L. Chan, and B. Zacharie, "Synthesis and antiviral activities of N-9-oxypurine 1,3-dioxolane and 1,3-oxathiolane nucleosides", Bioorg. Med. Chem. Lett., 10, 2223-2226 (2000). https://doi.org/10.1016/S0960-894X(00)00452-2
  40. M. T. Genta, C. Villa, E. Mariani, A. Loupy, A. Petit, R. Rizzetto, A. Mascarotti, F. Morini, and M. Ferro, "Microwave-assisted preparation of cyclic ketals from a cineole ketone as potential cosmetic ingredients: Solvent-free synthesis, odour evaluation, in vitro cytotoxicity and antimicrobial assays", Int. J. Pharm., 231, 11-20 (2002). https://doi.org/10.1016/S0378-5173(01)00821-3
  41. H. Baji, T. Kimny, F. Gasquez, M. Flammang, P. L. Compagnon, A. Delcourt, G. Mathieu, B. Viossat, G. Morgant, and D. Nguyen-Huy, "Synthesis, antifungal activity and structure-activity relationships of 2-(alkyl or aryl)-2-(alkyl or polyazol-1-ylmethyl)-4-(polyazol-1-ylmethyl)-1,3-dioxolanes", Eur. J. Med. Chem., 32, 637-650 (1997). https://doi.org/10.1016/S0223-5234(97)83290-4
  42. R. Shirai, H. Takayama, A. Nishikawa, Y. Koiso, and Y. Hashimoto, "Asymmetric synthesis of antimitotic combretadioxolane with potent antitumor activity against multi-drug resistant cells", Bioorganic Med. Chem. Lett., 8, 1997-2000 (1998). https://doi.org/10.1016/S0960-894X(98)00344-8
  43. M. Aepkers and B. Wunsch, "Structure-affinity relationship studies of non-competitive NMDA receptor antagonists derived from dexoxadrol and etoxadrol", Bioorganic Med. Chem., 13, 6836-6849 (2005). https://doi.org/10.1016/j.bmc.2005.07.030
  44. Fugen Ozkanlia, Ahu Guneya, u Calis, and T Uzbay, "Synthesis and anticonvulsant activity of some new dioxolane derivatives", Arzneimittel-Forschung/Drug Res., 53, 758-762 (2003).
  45. C. Li, Q. Lan, Y. Yang, H. Shao, and H. Zhan, "Flexible artificial solid electrolyte interphase formed by 1,3-dioxolane oxidation and polymerization for metallic lithium anodes", ACS Appl. Mater. Interfaces, 11, 2479-2489 (2019). https://doi.org/10.1021/acsami.8b16080
  46. Y. Wang, R. Xu, B. Xiao, D. Lv, Y. Peng, Y. Zheng, Y. Shen, J. Chai, X. Lei, S. Luo, X. Wang, X. Liang, J. Feng, and Z. Liu, "A poly(1,3-dioxolane) based deep-eutectic polymer electrolyte for high performance ambient polymer lithium battery", Mater. Today Phys., 22, 100620 (2022).
  47. L. Huang, W. Guo, H. Mondal, S. Schaefer, T. N. Tran, S. Fan, Y. Ding, and H. Lin, "Effect of branch length on the structural and separation properties of hyperbranched poly(1,3-dioxolane)", Macromolecules, 55, 382-389 (2022). https://doi.org/10.1021/acs.macromol.1c02045
  48. W. Guo, T. N. Tran, H. Mondal, S. Schaefer, L. Huang, and H. Lin, "Superior CO2/N2 separation performance of highly branched poly(1,3 dioxolane) plasticized by polyethylene glycol", J. Membr. Sci., 648, 1-9 (2022).
  49. J. Liu, C. R. P. Fulong, L. Hu, L. Huang, G. Zhang, T. R. Cook, and H. Lin, "Interpenetrating networks of mixed matrix materials comprising metal-organic polyhedra for membrane CO2 capture", J. Membr. Sci., 606, 118122 (2020).