DOI QR코드

DOI QR Code

Characterization of Fuel Cell Stack Using Hydrocarbon Polymer-Silica Composite Membranes

탄화수소계 고분자-실리카 복합막이 적용된 연료전지 스택 성능평가

  • Hyun Woo Kang (Department of Energy Engineering, Gyeongsang National University) ;
  • Doo Sung Hwang (Department of Energy Engineering, Hanyang University) ;
  • Chi Hoon Park (Department of Energy Engineering, Gyeongsang National University) ;
  • Young Moo Lee (Department of Energy Engineering, Hanyang University)
  • 강현우 (경상국립대학교 에너지공학과) ;
  • 황두성 (한양대학교 에너지공학과) ;
  • 박치훈 (경상국립대학교 에너지공학과) ;
  • 이영무 (한양대학교 에너지공학과)
  • Received : 2023.06.19
  • Accepted : 2023.06.23
  • Published : 2023.06.30

Abstract

In this study, the electrochemical performance of a 5-layer fuel cell stack using silica composite membranes as polymer electrolyte membranes was evaluated. It was observed that the flow rate of the fuel gases plays a crucial role in stack performance, particularly being mainly dependent on the flow rate of hydrogen. Increasing the flow rate of oxygen resulted in negligible changes in performance, whereas an increase in the flow rate of hydrogen demonstrated performance improvements. However, this led to an imbalance in the ratio of hydrogen to oxygen flow rates, causing significant degradation in stack performance and durability. A decline in stack performance was also observed over time due to the degradation of stack components. This phenomenon was consistently observed in individual unit cells. Based on these findings, it was emphasized that, in addition to optimizing the performance of each component during stack operation, it is important to optimize design and operating conditions for uniform flow rate control. Lastly, the developed silica composite membrane was assessed to have sufficient performance for application in actual fuel cell systems, exhibiting a performance of over 25 W based on maximum power.

본 연구에서는 실리카 복합막 기반 고분자 전해질막을 5단 연료전지 스택에 적용하여 성능 평가를 수행하였다. 이를 통하여, 개별 구성 요소의 성능도 중요하지만, 전체적인 관점에서 공급되는 연료의 유량이 스택 성능에 중요한 역할을 하며, 특히 수소의 유량에 크게 의존한다는 사실이 확인하였다. 산소의 유량을 증가시켜도 성능의 변화는 미미한 반면, 수소의 유량을 증가시키면 성능이 향상되는 것을 확인하였다. 그러나 수소의 유량 증가는 수소와 산소 유량 비율의 불균형을 초래하여 장기적으로는 스택 성능과 내구성을 저하시키는 문제가 관찰되었다. 이러한 현상을 스택 구성 요소 및 개별 단위 셀에서도 관찰할 수 있었으며, 따라서 스택 운전 시 각 구성 요소의 성능을 최적화하는 것 외에도 균일한 유량 제어를 위해 유로 설계 및 운전 조건을 최적화하는 것이 중요하다는 것을 알 수 있었다. 마지막으로 실리카 복합막은 최대 출력 기준 25 W 이상의 성능을 나타내어 실제 연료전지 시스템에 적용하기에 충분한 성능을 갖춘 것으로 판단된다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2019R1A2C1087209 & 2022M3J1A10853821).

References

  1. A. J. Appleby and F. R. Foules, "Fuel cell handbook", Van Nostrand Reinhold, New York, USA (1989).
  2. H. Kang and C. H. Park, "Effect of Nafion® chain length on proton transport as a binder material", Membr. J., 30, 57 (2020).
  3. B. C. Steele and A. Heinzel, "Materials for fuel-cell technologies", Nature, 414, 345 (2001).
  4. M. Winter and R. J. Brodd, "What are batteries, fuel cells, and supercapacitors?", Chem. Rev., 104, 4245 (2004).
  5. W. Vielstich, A. Lamm, and H. Gasteiger, "Handbook of fuel cells. Fundamentals, technology, applications", John Wiley & Sons, New York, USA (2003).
  6. U. Soupremanien, S. Le Person, M. Favre-Marinet, and Y. Bultel, "Tools for designing the cooling system of a proton exchange membrane fuel cell", Appl. Therm. Eng., 40, 161 (2012).
  7. M. R. Islam, B. Shabani, and G. Rosengarten, "Nanofluids to improve the performance of PEM fuel cell cooling systems: A theoretical approach", Applied Energy, 178, 660 (2016).
  8. A. Friedl, S. Fraser, W. R. Baumgartner, and V. Hacker, "Experimental analysis of internal gas flow configurations for a polymer electrolyte membrane fuel cell stack", J. Power Sources, 185, 248 (2008).
  9. R. Jinnouchi and K. Okazaki, "Molecular dynamics study of transport phenomena in perfluorosulfonate ionomer membranes for polymer electrolyte fuel cells", J. Electrochem. Soc., 150, E66 (2002).
  10. C. H. Park, S. Y. Nam, and Y. T. Hong, "Molecular dynamics (MD) study of proton exchange membranes for fuel cells", Membr. J., 26, 329 (2016).
  11. H. Kang, M. Cheon, C. H. Lee, T.-H. Kim, Y. T. Hong, S. Y. Nam, and C. H. Park, "Mesoscale simulation based on the dynamic mean-field density functional method on block-copolymeric ionomers for polymer electrolyte membranes", Membranes, 13, 258 (2023).
  12. K.-D. Kreuer, "Proton conductivity: Materials and applications", Chem. Mater., 8, 610 (1996).
  13. M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla, and J. E. McGrath, "Alternative polymer systems for proton exchange membranes (PEMs)", Chem. Rev., 104, 4587 (2004).
  14. J. Larminie, A. Dicks, and M. S. McDonald, "Fuel cell systems explained", Vol. 2, J. Wiley Chichester, UK, 2003.
  15. Y. Wang, S. J. Moura, S. G. Advani, and A. K. Prasad, "Power management system for a fuel cell/battery hybrid vehicle incorporating fuel cell and battery degradation", Int. J. Hydrogen Energy, 44, 8479 (2019).
  16. S. Ma, M. Lin, T.-E. Lin, T. Lan, X. Liao, F. Marechal, Y. Yang, C. Dong, and L. Wang, "Fuel cell-battery hybrid systems for mobility and off-grid applications: A review", Renew. Sust. Energ. Rev., 135, 110119 (2021).
  17. C. H. Park, H. S. Kim, and Y. M. Lee, "Surface modification of proton exchange membrane by introduction of excessive amount of nanosized silica", Membr. J., 24, 301 (2014).
  18. Y.-K. Kwon, J.-K. Lee, D.-J. Ji, and J.-Y. Lee, "Electrochemical characteristics of home-made bipolar plate and its relationship with fuel cell performance", J. Korean Electrochem. Soc., 12, 68 (2009).
  19. D. S. Hwang, C. H. Park, S. C. Yi, and Y. M. Lee, "Optimal catalyst layer structure of polymer electrolyte membrane fuel cell", Int. J. Hydrogen Energy, 36, 9876 (2011).
  20. S. Shimpalee, M. Ohashi, J. Van Zee, C. Ziegler, C. Stoeckmann, C. Sadeler, and C. Hebling, "Experimental and numerical studies of portable PEMFC stack", Electrochim. Acta, 54, 2899 (2009).
  21. N. Cheng, S. Mu, M. Pan, and P. P. Edwards, "Improved lifetime of PEM fuel cell catalysts through polymer stabilization", Electrochem. Commun., 11, 1610 (2009).