DOI QR코드

DOI QR Code

Synthesis and Characterization of Ion Exchange Particles for Application of Anion Exchange Membrane

음이온교환막 적용을 위한 이온교환입자의 합성 및 특성평가

  • Dong Jun Lee (Department of materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Kwang Seop Im (Department of materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Ka Yeon Ryu (Research Institute for Green Energy Convergence Technology, Gyeongsang National University) ;
  • Sang Yong Nam (Department of materials Engineering and Convergence Technology, Gyeongsang National University)
  • 이동준 (경상국립대학교 나노신소재융합공학과) ;
  • 임광섭 (경상국립대학교 나노신소재융합공학과) ;
  • 류가연 (경상국립대학교 그린에너지융합연구소) ;
  • 남상용 (경상국립대학교 나노신소재융합공학과)
  • Received : 2023.06.12
  • Accepted : 2023.06.26
  • Published : 2023.06.30

Abstract

In this study, Br-PPO was developed by applying additive organic particles through a suspension polymerization synthesis method. The anion exchange membrane fuel cell system performance was evaluated using it to an anion exchange membrane. To improve the performance, organic ion exchange particles were prepared and added to the anion exchange membrane. Chemical structure analysis and synthesis were determined through FT-IR and NMR, and tensile strength and thermal stability were measured through TGA and UTM to determine whether it could be driven. Before the anion exchange membrane fuel cell test, the performance was evaluated by measuring the ion conductivity and ion exchange capacity. Finally, the Br-PPO-TMA-SDV (0.7%) anion exchange membrane with excellent ion conductivity and ion exchange capacity was introduced into the fuel cell system. Its performance was compared with FAA-3-50, a commercial membrane, to determine whether it could be introduced into a fuel cell system.

본 연구에서는 현탁중합을 통해 이온교환입자를 합성하였다. 또한 음이온 교환막을 제조하기 위해 brominated poly(phenylene oxide) (Br-PPO)로 교환막 합성을 진행하였으며, 합성한 이온교환입자를 Br-PPO에 첨가하여 음이온 교환막에 성능을 향상시키고자 하였고, 이를 적용하여 음이온 교환막 연료전지 시스템의 성능 평가를 진행했다. 이온교환입자는 FT-IR, TGA 및 UTM을 통해 구조 분석, 열적 기계적 특성을 평가하였다. Br-PPO는 NMR을 통해 화학적 구조 분석 및 합성여부를 확인하였고, 음이온 교환막 연료 전지 셀 테스트를 진행하기 전 이온전도도와 이온교환용량, 팽윤도 및 수분함수율을 측정해 연구되고 있는 다른 음이온 교환막들과 비교를 통해 성능을 평가했다. 최종적으로 가장 성능이 우수했던 이온교환입자를 0.7 wt%를 첨가한 Br-PPO-TMA- SDV 음이온 교환막을 연료전지 시스템에 도입하여 상용 막인 FAA-3-50과 성능을 비교했다.

Keywords

Acknowledgement

이 논문은 2022년도 정부(교육부)의 재원으로 한국연구재단 기초연구사업의 지원을 받아 수행된 연구임(No. NRF-2021M1A2A2038115) 그리고 이 논문은 2022년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임 (No.2020R1A6A03038697)

References

  1. M. P. Stevens, "Polymer chemistry", pp. 293-295, Oxford university press, New York (1990).
  2. J. h. Lee, S. N. Lee, M. S. Park, E. K. Kim, and M. J. Moon, "Preparation of polystyrene particles based on interfacial stability of suspension polymerization", Korean Graphic Arts Commun. Soc., 20, 65-78 (2002).
  3. J. Seidl, J. Malinsky, K. Dusek, and W. Heitz, "Macroporous styrene-divinylbenzene copolymers and their use in chromatography and for the preparation of ion exchangers", Adv. Polym. Sci., 5, 11, (1967).
  4. N. Fontanals, R. M. Marce, F. Borrull, and P. A. G. Cormack, "Hypercrosslinked materials: Preparation, characterization and applications", Polym. Chem., 6, 7231-7244 (2015). https://doi.org/10.1039/C5PY00771B
  5. M. P. Tsyurupa, and V. A. Davankov, "Porous structure of hypercrosslinked polystyrene: State-of-the-art mini-review", React. Funct. Polym., 66, 768-779 (2006). https://doi.org/10.1016/j.reactfunctpolym.2005.11.004
  6. J. W. Lee, I. W. Lee, and J. B Lee, "Medical application of nanomaterials and prospect", J. Clinical Otolaryngol. Head Neck Surg., 20, 119-126 (2009).
  7. J. Briffa, E. Sinagra, and R. Blundell, "Heavy metal pollution in the environment and their toxicological effects on human", Heliyon., 6, e04691 (2020).
  8. L. Rai, J. P. Gaur, and H. D. Kumar, "Phycology and heavy-metal pollution", Biol. Rev., 56, 99-151 (1981). https://doi.org/10.1111/j.1469-185X.1981.tb00345.x
  9. S. K. Agarwal, "Heavy metal pollution", Ansari Road and Darya Ganj, APH, New Delhi (2009).
  10. Q. Yang, Z. Li, X. Lu, Q. Duan, L. Huang, and J. Bi, "A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment", Sci. Total Environ., 642, 690-700 (2018). https://doi.org/10.1016/j.scitotenv.2018.06.068
  11. H. Hu, Q. Jin, and P. Kavan, "A study of heavy metal pollution in China: Current status, pollution-control policies and countermeasures", Sustain Sci., 6, 5820-5838 (2014). https://doi.org/10.3390/su6095820
  12. M. T. Majeed and A. Tauqir, "Effects of urbanization, industrialization, economic growth, energy consumption, financial development on carbon emissions: an extended STIRPAT model for het-erogenous income groups", Pakistan J. Commer. Soc. Sci., 14, 652-681 (2020).
  13. D. J. Kim, C. H. Park, and S. Y. Nam, "Molecular dynamics simulations of modified PEEK polymeric membrane for fuel cell applications", Int. J. Hydrog. Energy, 41, 7641-7648 (2016). https://doi.org/10.1016/j.ijhydene.2015.12.220
  14. S. Y. Lee, H. J. Kim, S. Y. Nam, and C. H. Park, "Synthetic strategies for high performance hydrocarbon polymer electrolyte membranes (PEMs) for fuel cells", Membr. J., 26, 1-13 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.1.1
  15. M. Hren, M. Bozic, D. Fakin, K. S. Kleinschek, and S. Gorgieva, "Alkaline membrane fuel cells: Anion exchange membranes and fuels", Sustain. Energy Fuels., 5, 604-637 (2021). https://doi.org/10.1039/D0SE01373K
  16. D. S. Kim, T. I. Yun, M. Y. Seo, H. I. Cho, Y. M. Lee, and S. Y. Nam, "Preparation of ion-exchange membranes for fuel cell based on cross-linked PVA/PSSA_MA/silica hybrid", Desalination, 200, 634-635 (2006). https://doi.org/10.1016/j.desal.2006.03.456
  17. D. J. Kim, H. Y. Hwang, S. B. Jung, and S. Y. Nam, "Sulfonated poly (arylene ether sulfone)/ Laponite-SO3H composite membrane for direct methanol fuel cell", J Ind Eng Chem, 18, 556-562 (2012). https://doi.org/10.1016/j.jiec.2011.11.128
  18. T. Y. Son, T. H. Kim, H. J. Kim, and S. Y. Nam, "Problems and solutions of anion exchange membranes for anion exchange membrane fuel cell (AEMFC)", Appl. Chem. Eng., 29, 489-496 (2018).
  19. D. J. Kim, B. N. Lee, and S. Y. Nam, "Synthesis and characterization of PEEK containing imidazole for anion exchange membrane fuel cell", Int. J. Hydrog. Energy, 42, 37, 23759-23767 (2017). https://doi.org/10.1016/j.ijhydene.2017.02.199
  20. D. J. Kim and S. Y. Nam, "Research trend of organic/inorganic composite membrane for polymer electrolyte membrane fuel cell", Membr. J., 22, 155-170 (2012).
  21. M. M. Hossen, M. S. Hasan, M. R. I. Sardar, J. bin Haider, K. Tammeveski, and P. Atanassov, "State-of-the-art and developmental trends in platinum group metal-free cathode catalyst for anion exchange membrane fuel cell (AEMFC)", Appl. Catal. B, 121733 (2022).
  22. K. Dannenberg, P. Ekdunge, and G. Lindbergh, "Mathematical model of the PEMFC", J. Appl. Electrochem, 30, 1377-1387 (2000). https://doi.org/10.1023/A:1026534931174
  23. F. Barbir and T. Gomez, "Efficiency and economics of proton exchange membrane (PEM) fuel cells", Int. J. Hydrog. Energy, 22, 1027-1037 (1997). https://doi.org/10.1016/S0360-3199(96)00175-9
  24. D. J. Kim, C. H. Park, and S. Y. Nam, "Characterization of a soluble poly (ether ether ketone) anion exchange membrane for fuel cell applications", Int. J. Hydrog. Energy, 41, 7649-7658 (2016). https://doi.org/10.1016/j.ijhydene.2015.12.088
  25. B. C. Bae, E. Y. Kim, S. J. Lee, and H. J. Lee, "Research Trends of Anion Exchange Membranes within Alkaline Fuel Cells", Renew. Energ, 11, 52-61 (2015). https://doi.org/10.7849/ksnre.2015.12.11.4.52
  26. G. Merle, M. Wessling, and K. Nijmeijer, "Anion exchange membranes for alkaline fuel cells: A review", J. Membr. Sci., 377, 1-35 (2011). https://doi.org/10.1016/j.memsci.2011.04.043
  27. C. H. Park, T. H. Kim, D. J. Kim, and S. Y. Nam, "Molecular dynamics simulation of the functional group effect in hydrocarbon anionic exchange membranes", Int. J. Hydrog. Energy, 42, 20895-20903 (2017). https://doi.org/10.1016/j.ijhydene.2017.05.146
  28. V. Vijayakumar, T. Y. Son, H. J. Kim, and S. Y. Nam, "A facile approach to fabricate poly (2, 6-dimethyl-1, 4-phenylene oxide) based anion exchange membranes with extended alkaline stability and ion conductivity for fuel cell applications", J. Membr. Sci., 591, 117314 (2019).
  29. S. Gottesfeld, D. R. Dekel, M. Page, C. Bae, Y. Yan, P. Zelenay, and Y. S. Kim, "Anion exchange membrane fuel cells: Current status and remaining challenges", J. Power Sources, 375, 170-184 (2018). https://doi.org/10.1016/j.jpowsour.2017.08.010
  30. D. R. Dekel, "Review of cell performance in anion exchange membrane fuel cells" J. Power Sources, 375, 158-169 (2018). https://doi.org/10.1016/j.jpowsour.2017.07.117
  31. T. B. Ferriday and P. H. Middleton, "Alkaline fuel cell technologty-A review", Int. J. Hydrog. Energy, 46, 35, 18489-18510 (2021). https://doi.org/10.1016/j.ijhydene.2021.02.203
  32. S. Y. Nam, B. K. Park, S. H. Kong, and Y. J. Kim, "Organic/inorganic hybrid electrolytes for the application of direct methanol fuel cell (DMFC)-Preparation and properties of sulfonated SEBS (SSEBS)-clay hybrid membranes", Membr. J., 15, 165-174 (2005).
  33. C. G. Arges, V. K. Ramani, and P. N. Pintauro, "The chalkboard: Anion exchange membrane fuel cells", Electrochem. Soc. Interface, 19, 31 (2010).
  34. L. Osmieri, L. Pezzolato, and S. Specchia, "Recent trends on the application of PGM-free catalysts at the cathode of anion exchange membrane fuel cells", Curr. Opin. Electrochem., 9, 240-256 (2018). https://doi.org/10.1016/j.coelec.2018.05.011
  35. X. Zuo, S. Yu, X. Xu, R. Bao, J. Xu, and W. Qu, "Preparation of organic-inorganic hybrid cation-exchange membranes via blending method and their electrochemical characterization", J. Membr. Sci., 328, 23-30 (2009). https://doi.org/10.1016/j.memsci.2008.08.012
  36. Y. Wang, J. Xu, H. Zang, and Z. Wang, "Synthesis and properties of sulfonated poly (arylene ether ketone sulfone) containing amino groups/functional titania inorganic particles hybrid membranes for fuel cells", Int. J. Hydrog. Energy, 44, 6136-6147 (2019). https://doi.org/10.1016/j.ijhydene.2019.01.035
  37. A. M. Herring, "Inorganic-polymer composite membranes for proton exchange membrane fuel cells", J. Macromol. Sci. A, 46, 245-296 (2006). https://doi.org/10.1080/00222340600796322
  38. D. V. Golubenko, R. R. Shaydullin, and A. B. Yaroslavtsev, "Improving the conductivity and permselectivity of ion-exchange membranes by introduction of inorganic oxide nanoparticles: Impact of acid-base properties", Colloid Polym. Sci., 297, 741-748 (2019). https://doi.org/10.1007/s00396-019-04499-1
  39. D. Choi, "Electrochemical analysis of polymer membrane with inorganic nanoparticles for high-temperature PEM fuel cells", Membranes, 12, 680 (2022).
  40. V. Vijayakumar, T. Y. Son, K. S. Im, J. E. Chae, H. J. Kim, T. H. Kim, and S. Y. Nam, "Anion exchange composite membranes composed of quaternary ammonium-functionalized poly (2, 6-dimethyl-1, 4-phenylene oxide) and silica for fuel cell application", ACS Omega, 6, 10168-10179 (2021). https://doi.org/10.1021/acsomega.1c00247
  41. R. A. Becerra-Arciniegas, R. Narducci, G. Ercolani, S. Antonaroli, E. Sgreccia, L. Pasquini, and M. L. Di Vona, "Alkaline stability of model anion exchange membranes based on poly (phenylene oxide) (PPO) with grafted quaternary ammonium groups: Influence of the functionalization route", Polymer, 185, 121931 (2019).
  42. R. Castaldo, R. Avolio, M. Cocca, G. Gentile, M. E. Errico, M. Avella, and V. Ambrogi, "Synthesis and adsorption study of hyper-crosslinked styrene-based nanocomposites containing multi-walled carbon nanotubes", RSC Adv., 7, 6865-6874 (2017). https://doi.org/10.1039/C6RA25481K
  43. M. Fathy, A. Moghny, A. E. Awadallah, and A. H. A. A. El-Bellihi, "Incorporation of multi-walled carbon nanotubes in microspheres used as anion exchange resin via suspension polymerization", Appl. Nanosci., 4, 543-549 (2014). https://doi.org/10.1007/s13204-013-0243-8