DOI QR코드

DOI QR Code

Inducible Nitric Oxide Synthase Mediates the Triglyceride-induced Death of THP-1 Monocytes

  • Byung Chul Jung (Department of Nutritional Sciences and Toxicology, University of California) ;
  • Hyun-Kyung Kim (Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University) ;
  • Jaewon Lim (Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University) ;
  • Sung Hoon Kim (Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University) ;
  • Yoon Suk Kim (Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University)
  • Received : 2023.05.10
  • Accepted : 2023.06.27
  • Published : 2023.06.30

Abstract

Triglyceride (TG) accumulation can cause monocytic death and suppress innate immunity. However, the signaling pathways involved in this phenomenon are not fully understood. This study aimed to examine whether inducible nitric oxide synthase (iNOS) is involved in the TG-induced death of THP-1 monocytes. Results showed that iNOS was upregulated in TG-treated THP-1 monocytes, and iNOS inhibition blocked TG-induced monocytic death. In addition, TG-induced poly (ADP-ribose) polymerase (PARP) cleavage and caspase-3 and -7 activation were suppressed by iNOS inhibition. Furthermore, the expression of X-linked inhibitor of apoptosis protein (XIAP) and survivin, which inhibit caspase-3 and -7, was reduced in TG-treated THP-1 monocytes, but iNOS inhibition recovered the TG-induced downregulation of XIAP and survivin expression. Considering that TG-induced monocytic death is triggered by caspase2 and -8, we investigated whether caspase-2 and -8 are linked to the TG-induced expression of iNOS in THP-1 monocytes. When the activities of caspase-2 and -8 were inhibited by specific inhibitors, the TG-induced upregulation of iNOS and downregulation of XIAP and survivin were restored in THP-1 monocytes. These results suggest that TG-induced monocytic death is mediated by the caspase-2/caspase-8/iNOS/XIAP and survivin/executioner caspase/PARP pathways.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2021R1G1A1094159) and by the Korea Nazarene University Research Grants (2023).

References

  1. Anavi S, Eisenberg-Bord M, Hahn-Obercyger M, Genin O, Pines M, Tirosh O. The role of inos in cholesterol-induced liver fibrosis. Lab Invest. 2015. 95: 914-924. https://doi.org/10.1038/labinvest.2015.67
  2. Aronis A, Madar Z, Tirosh O. Mechanism underlying oxidative stress-mediated lipotoxicity: Exposure of j774.2 macrophages to triacylglycerols facilitates mitochondrial reactive oxygen species production and cellular necrosis. Free Radic Biol Med. 2005. 38: 1221-1230. https://doi.org/10.1016/j.freeradbiomed.2005.01.015
  3. Baydoun HH, Cherian MA, Green P, Ratner L. Inducible nitric oxide synthase mediates DNA double strand breaks in human t-cell leukemia virus type 1-induced leukemia/lymphoma. Retrovirology. 2015. 12: 71.
  4. Burguillos MA, Deierborg T, Kavanagh E, Persson A, Hajji N, Garcia-Quintanilla A, Cano J, Brundin P, Englund E, Venero JL, Joseph B. Caspase signalling controls microglia activation and neurotoxicity. Nature. 2011. 472: 319-324. https://doi.org/10.1038/nature09788
  5. Chiu S, Bharat A. Role of monocytes and macrophages in regulating immune response following lung transplantation. Curr Opin Organ Transplant. 2016. 21: 239-245. https://doi.org/10.1097/MOT.0000000000000313
  6. Dijkstra G, Zandvoort AJ, Kobold AC, de Jager-Krikken A, Heeringa P, van Goor H, van Dullemen HM, Tervaert JW, van de Loosdrecht A, Moshage H, Jansen PL. Increased expression of inducible nitric oxide synthase in circulating monocytes from patients with active inflammatory bowel disease. Scand J Gastroenterol. 2002. 37: 546-554. https://doi.org/10.1080/00365520252903099
  7. Dubey M, Nagarkoti S, Awasthi D, Singh AK, Chandra T, Kumaravelu J, Barthwal MK, Dikshit M. Nitric oxide-mediated apoptosis of neutrophils through caspase-8 and caspase-3-dependent mechanism. Cell Death & Disease. 2016. 7: e2348-e2348. https://doi.org/10.1038/cddis.2016.248
  8. Emruzi Z, Babaheidarian P, Arshad M, Ahangari G. Effect of hyperlipidemia on cell mediated immunity; could it be as predisposing factor of cancer risk? Biomedical Journal. 2018. 1: 5.
  9. Engels K, Knauer SK, Loibl S, Fetz V, Harter P, Schweitzer A, Fisseler-Eckhoff A, Kommoss F, Hanker L, Nekljudova V. No signaling confers cytoprotectivity through the survivin network in ovarian carcinomas. Cancer Research. 2008. 68: 5159-5166. https://doi.org/10.1158/0008-5472.CAN-08-0406
  10. Fauconnier J, Meli AC, Thireau J, Roberge S, Shan J, Sassi Y, Reiken SR, Rauzier JM, Marchand A, Chauvier D, Cassan C, Crozier C, Bideaux P, Lompre AM, Jacotot E, Marks AR, Lacampagne A. Ryanodine receptor leak mediated by caspase8 activation leads to left ventricular injury after myocardial ischemia-reperfusion. Proc Natl Acad Sci U S A. 2011. 108: 13258-13263. https://doi.org/10.1073/pnas.1100286108
  11. Hegazy MEF, Hamed AR, Mohamed TA, Debbab A, Nakamura S, Matsuda H, Pare PW. Anti-inflammatory sesquiterpenes from the medicinal herb tanacetum sinaicum. Rsc Advances. 2015. 5: 44895-44901. https://doi.org/10.1039/C5RA07511D
  12. Ilan E, Tirosh O, Madar Z. Triacylglycerol-mediated oxidative stress inhibits nitric oxide production in rat isolated hepatocytes. J Nutr. 2005. 135: 2090-2095. https://doi.org/10.1093/jn/135.9.2090
  13. Imre G, Heering J, Takeda AN, Husmann M, Thiede B, Zu Heringdorf DM, Green DR, Van Der Goot FG, Sinha B, Dotsch V. Caspase-2 is an initiator caspase responsible for pore-forming toxin-mediated apoptosis. The EMBO Journal. 2012. 31: 2615-2628. https://doi.org/10.1038/emboj.2012.93
  14. Ivey R, Desai M, Green K, Sinha-Hikim I, Friedman TC, Sinha-Hikim AP. Additive effects of nicotine and high-fat diet on hepatocellular apoptosis in mice: Involvement of caspase 2 and inducible nitric oxide synthase-mediated intrinsic pathway signaling. Horm Metab Res. 2014. 46: 568-573. https://doi.org/10.1055/s-0034-1375610
  15. Jaiswal M, LaRusso NF, Burgart LJ, Gores GJ. Inflammatory cytokines induce DNA damage and inhibit DNA repair in cholangiocarcinoma cells by a nitric oxide-dependent mechanism. Cancer Research. 2000. 60: 184-190. https://doi.org/10.1053/gast.2001.20875
  16. Jaiswal PK, Goel A, Mittal RD. Survivin: A molecular biomarker in cancer. Indian J Med Res. 2015. 141: 389-397. https://doi.org/10.4103/0971-5916.159250
  17. Jo HS, Kim DS, Ahn EH, Kim DW, Shin MJ, Cho SB, Park JH, Lee CH, Yeo EJ, Choi YJ, Yeo HJ, Chung CS, Cho SW, Han KH, Park J, Eum WS, Choi SY. Protective effects of tatnqo1 against oxidative stress-induced ht-22 cell damage, and ischemic injury in animals. BMB Rep. 2016. 49: 617-622. https://doi.org/10.5483/BMBRep.2016.49.11.117
  18. Jung BC, Kim HK, Kim SH, Kim YS. Triglyceride induces DNA damage leading to monocyte death by activating caspase-2 and caspase-8. BMB Rep. 2023. 56: 166-171. https://doi.org/10.5483/BMBRep.2022-0201
  19. Lee J, Hur J, Lee P, Kim JY, Cho N, Kim SY, Kim H, Lee MS, Suk K. Dual role of inflammatory stimuli in activation-induced cell death of mouse microglial cells. Initiation of two separate apoptotic pathways via induction of interferon regulatory factor-1 and caspase-11. J Biol Chem. 2001. 276: 32956-32965. https://doi.org/10.1074/jbc.M104700200
  20. Lei L, Li H, Yan F, Xiao Y. Hyperlipidemia impaired innate immune response to periodontal pathogen porphyromonas gingivalis in apolipoprotein e knockout mice. Plos One. 2013. 8: e71849.
  21. Li L, Zhang J, Jin B, Block ER, Patel JM. Nitric oxide upregulation of caspase-8 mrna expression in lung endothelial cells: Role of jak2/stat-1 signaling. Mol Cell Biochem. 2007. 305: 71-77. https://doi.org/10.1007/s11010-007-9529-z
  22. Lopez S, Bermudez B, Pacheco YM, Lopez-Lluch G, Moreda W, Villar J, Abia R, Muriana FJ. Dietary oleic and palmitic acids modulate the ratio of triacylglycerols to cholesterol in postprandial triacylglycerol-rich lipoproteins in men and cell viability and cycling in human monocytes. J Nutr. 2007. 137: 1999-2005. https://doi.org/10.1093/jn/137.9.1999
  23. Lopez-Moratalla N, Calleja A, Gonzalez A, Perez-Mediavilla LA, Aymerich MS, Burrel MA, Santiago E. Inducible nitric oxide synthase in monocytes from patients with graves' disease. Biochem Biophys Res Commun. 1996. 226: 723-729. https://doi.org/10.1006/bbrc.1996.1420
  24. Lopez-Moratalla N, Gonzalez A, Aymerich MS, Lopez-Zabalza MJ, Pio R, de Castro P, Santiago E. Monocyte inducible nitric oxide synthase in multiple sclerosis: Regulatory role of nitric oxide. Nitric Oxide. 1997. 1: 95-104. https://doi.org/10.1006/niox.1996.0111
  25. Manderscheid M, UK ME, Franzen R, Pfeilschifter J. Regulation of inhibitor of apoptosis expression by nitric oxide and cytokines: Relation to apoptosis induction in rat mesangial cells and raw 264.7 macrophages. J Am Soc Nephrol. 2001. 12: 1151-1163. https://doi.org/10.1681/ASN.V1261151
  26. Narni-Mancinelli E, Soudja SM, Crozat K, Dalod M, Gounon P, Geissmann F, Lauvau G. Inflammatory monocytes and neutrophils are licensed to kill during memory responses in vivo. PLoS Pathog. 2011. 7: e1002457.
  27. Obexer P, Ausserlechner MJ. X-linked inhibitor of apoptosis protein - a critical death resistance regulator and therapeutic target for personalized cancer therapy. Front Oncol. 2014. 4: 197.
  28. Oleson BJ, Broniowska KA, Schreiber KH, Tarakanova VL, Corbett JA. Nitric oxide induces ataxia telangiectasia mutated (atm) protein-dependent gammah2ax protein formation in pancreatic beta cells. J Biol Chem. 2014. 289: 11454-11464. https://doi.org/10.1074/jbc.M113.531228
  29. Onody A, Csonka C, Giricz Z, Ferdinandy P. Hyperlipidemia induced by a cholesterol-rich diet leads to enhanced peroxynitrite formation in rat hearts. Cardiovasc Res. 2003. 58: 663-670. https://doi.org/10.1016/S0008-6363(03)00330-4
  30. Palikhe S, Ohashi W, Sakamoto T, Hattori K, Kawakami M, Andoh T, Yamazaki H, Hattori Y. Regulatory role of grk2 in the tlr signaling-mediated inos induction pathway in microglial cells. Front Pharmacol. 2019. 10: 59.
  31. Puig B, Tortosa A, Ferrer I. Cleaved caspase-3, caspase-7 and poly (adp-ribose) polymerase are complementarily but differentially expressed in human medulloblastomas. Neurosci Lett. 2001. 306: 85-88. https://doi.org/10.1016/S0304-3940(01)01873-0
  32. Puthanveetil P, Wang Y, Zhang D, Wang F, Kim MS, Innis S, Pulinilkunnil T, Abrahani A, Rodrigues B. Cardiac triglyceride accumulation following acute lipid excess occurs through activation of a foxo1-inos-cd36 pathway. Free Radic Biol Med. 2011. 51: 352-363. https://doi.org/10.1016/j.freeradbiomed.2011.04.009
  33. Qin S, Xu C, Li S, Wang X, Sun X, Wang P, Zhang B, Ren H. Hyperthermia induces apoptosis by targeting survivin in esophageal cancer. Oncology Reports. 2015. 34: 2656-2664. https://doi.org/10.3892/or.2015.4252
  34. Razavi HM, Hamilton JA, Feng Q. Modulation of apoptosis by nitric oxide: Implications in myocardial ischemia and heart failure. Pharmacol Ther. 2005. 106: 147-162. https://doi.org/10.1016/j.pharmthera.2004.11.006
  35. Saja MF, Baudino L, Jackson WD, Cook HT, Malik TH, Fossati-Jimack L, Ruseva M, Pickering MC, Woollard KJ, Botto M. Triglyceride-rich lipoproteins modulate the distribution and extravasation of ly6c/gr1(low) monocytes. Cell Reports. 2015. 12: 1802-1815. https://doi.org/10.1016/j.celrep.2015.08.020
  36. Schairer DO, Chouake JS, Nosanchuk JD, Friedman AJ. The potential of nitric oxide releasing therapies as antimicrobial agents. Virulence. 2012. 3: 271-279. https://doi.org/10.4161/viru.20328
  37. Serbina NV, Jia T, Hohl TM, Pamer EG. Monocyte-mediated defense against microbial pathogens. Annu Rev Immunol. 2008. 26: 421-452. https://doi.org/10.1146/annurev.immunol.26.021607.090326
  38. Simpson DS, Pang J, Weir A, Kong IY, Fritsch M, Rashidi M, Cooney JP, Davidson KC, Speir M, Djajawi TM, Hughes S, Mackiewicz L, Dayton M, Anderton H, Doerflinger M, Deng Y, Huang AS, Conos SA, Tye H, Chow SH, et al. Interferon-gamma primes macrophages for pathogen ligand-induced killing via a caspase-8 and mitochondrial cell death pathway. Immunity. 2022. 55: 423-441 e429.
  39. Taylor EL, Megson IL, Haslett C, Rossi AG. Nitric oxide: A key regulator of myeloid inflammatory cell apoptosis. Cell Death Differ. 2003. 10: 418-430. https://doi.org/10.1038/sj.cdd.4401152
  40. Wang K, Brems JJ, Gamelli RL, Holterman AX. Inos/no signaling regulates apoptosis induced by glycochenodeoxycholate in hepatocytes. Cell Signal. 2011. 23: 1677-1685. https://doi.org/10.1016/j.cellsig.2011.06.003