Acknowledgement
이 연구는 2021학년도 한국해양대학교 신진교수 정착연구지원사업 연구비 및 정부(과학기술정보통신부)의 재원으로 한국연구재단의 무인이동체원천기술개발 사업(2020M3C1C1A02086326)의 지원을 받아 수행되었습니다.
References
- Drela, M., 1989, "XFOIL: An analysis and design system for low Reynolds number airfoils," In Low Reynolds Number Aerodynamics, Springer, Berlin, Heidelberg., pp.1~12.
- Xflr5., 2019, http://www.xflr5.tech/xflr5.html.
- Oliver, J. M., Kipouros, T., and Savill, A.M., 2013, "A Self-adaptive Genetic Algorithm Applied to Multi-Objective Optimization of an Airfoil," In EVOLVE-A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation IV. Advances in Intelligent Systems and Computing, Springer Heidelberg., pp.261~ 276.
- Echavarria, C., Hoyos, J. D., Jimenez, J. H., Suarez, G., and Saldarriaga, A., 2022, "Optimal airfoil design through particle swarm optimization fed by CFD and XFOIL," J. Braz. Soc. Mech. Sci. Eng., Vol. 44(11), p.561.
- Kim, B. R., Lee, S. H., Jang, S. H., Hwang, G. I., and Yoon, M., 2022, "Prediction of aerodynamics using VGG16 and U-Net," J. Korean Soc. Vis., Vol. 20(3), pp.109~116.
- Seo, J. H., Yoon, H. S., Kim, and M. I., 2022, "Prediction of aerodynamic force coefficients and flow fields of airfoils using CNN and EncoderDecoder models.," J. Korean Soc. Vis., Vol. 20(3), pp.94~101.
- Bradski, G., 2000, "The openCV library," Dr. Dobb's Journal: Software Tools for the Professional Programmer, Vol. 25(11), pp.120~ 123.
- Ramchoun, H., Ghanou, Y., Ettaouil, M., and Janati Idrissi, M. A., 2016, "Multilayer perceptron: Architecture optimization and training,", Proc. IJIMAI, Vol. 4(1), pp.26~30. https://doi.org/10.9781/ijimai.2016.415
- Pokhrel, P., 2023, "A Comparison of AutoML Hyperparameter Optimization Tools for Tabular Data," Master's thesis, Youngstown State University.
- Frazier, P. I., 2018, "A tutorial on Bayesian optimization," arXiv preprint arXiv:1807.02811.
- Selig, M. S., 1996, "UIUC airfoil data site," Department of Aeronautical and Astronautical Engineering University of Illinois at Urbana-Champaign.
- Chicco, D., Warrens, M. J., and Jurman, G., 2021, "The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation," PeerJ Comput. Sci., Vol. 7, pp.623.
- Nagelkerke, N. J., 1991," A note on a general definition of the coefficient of determination," Biometrika., Vol. 78(3), pp.691~ 692. https://doi.org/10.1093/biomet/78.3.691