DOI QR코드

DOI QR Code

Review on the Effects of Herbal Medicine on Respiratory Diseases in In Vivo Particulate Matter Models

미세먼지 in vivo 모델에서 호흡기 질환에 대한 한약의 효과에 관한 연구 동향 분석

  • Seong-cheon Woo (Division of Respiratory Medicine, Dept. of Internal Medicine, College of Korean Medicine, Dae-Jeon University) ;
  • Su-won Lee (Division of Respiratory Medicine, Dept. of Internal Medicine, College of Korean Medicine, Dae-Jeon University) ;
  • Yang-chun Park (Division of Respiratory Medicine, Dept. of Internal Medicine, College of Korean Medicine, Dae-Jeon University)
  • 우성천 (대전대학교 한의과대학 폐계내과학교실) ;
  • 이수원 (대전대학교 한의과대학 폐계내과학교실) ;
  • 박양춘 (대전대학교 한의과대학 폐계내과학교실)
  • Received : 2023.05.19
  • Accepted : 2023.06.23
  • Published : 2023.06.30

Abstract

Objective: This study was conducted to review the effects of herbal medicine on respiratory diseases induced by the treatment of particulate matter in in vivo animal models. Methods: Literature searches were performed in seven databases (Pubmed, Embase, Cochrane Library, KISS, KTKP, OASIS, and ScienceON). After the searched studies were screened based on the inclusion/exclusion criteria, the publication date, origin, used animals, induction of particulate matter models, herbal medicine used for intervention, study design, outcome measure, and results of studies were analyzed. Results: Among a total of 972 studies primarily searched, 34 studies were finally included in our study. Of this number, 29 studies induced animal models by using only particulate matter, and 5 studies induced animal models with respiratory diseases, such as asthma and chronic obstructive pulmonary disease, by using particulate matter and other materials. In the selected studies, the treatments of herbal medicine in particulate matter models suppressed oxidative stress and inflammation in lung tissue, bronchoalveolar lavage fluid, and blood as well as lung injury in histological analysis. Conclusion: The results of this study suggest that herbal medicine is effective in treating respiratory diseases induced by particulate matter. These results are also expected to be useful data for designing further studies. However, more systematically designed in vivo studies related to particulate matter are needed.

Keywords

Acknowledgement

이 논문은 2022학년도 대전대학교 교내학술연구비 지원에 의해 연구되었음.

References

  1. OECD. The economic consequences of outdoor air pollution. 2016.
  2. Byun GR, Choi YS, Gil JS, Cha JI, Lee MH, Lee JT. Health and Economic Burden Attributable to Particulate Matter in South Korea: Considering Spatial Variation in Relative Risk. Journal of Environmental Health Sciences 2021;47(5):486-95. https://doi.org/10.5668/JEHS.2021.47.5.486
  3. Pope CA 3rd, Dockery DW. Health effects of fine particulate air pollution: lines that connect. Journal of the air & waste management association 2006;56(6):709-42. https://doi.org/10.1080/10473289.2006.10464485
  4. World Health Organization. Air pollution including WHO's 1999 guidelines for air pollution control. Geneva: World Health Organization; 2000.
  5. Shin DC. Health effects of ambient particulate matter. Journal of the Korean Medical Association 2007;50(2):175-82. https://doi.org/10.5124/jkma.2007.50.2.175
  6. Myong JP. Health effects of particulate matter. The Korean Journal of Medicine 2016;91(2):106-13. https://doi.org/10.3904/kjm.2016.91.2.106
  7. Chang CJ, Yang HH, Chang CA, Tsai HY. Relationship between air pollution and outpatient visits for nonspecific conjunctivitis. Investigative ophthalmology & visual science 2012;53(1):429-33.
  8. Hu R, Xie XY, Xu SK, Wang YN, Jiang M, Wen LR, et al. PM2.5 exposure elicits oxidative stress responses and mitochondrial apoptosis pathway activation in HaCaT keratinocytes. Chinese medical journal 2017;130(18):2205-14. https://doi.org/10.4103/0366-6999.212942
  9. Kyung SY, Kim YS, Kim WJ, Park MS, Song JW, Yum H, et al. Guideline for the prevention and management of particulate matter/Asian dust particle-induced adverse health effect on the patients with pulmonary diseases. Journal of the Korean Medical Association 2015;58(11):1060-9. https://doi.org/10.5124/jkma.2015.58.11.1060
  10. Liu S, Zhou Y, Liu S, Chen X, Zou W, Zhao D, et al. Association between exposure to ambient particulate matter and chronic obstructive pulmonary disease: results from a cross-sectional study in China. Thorax 2017;72(9):788-95. https://doi.org/10.1136/thoraxjnl-2016-208910
  11. Keet CA, Keller JP, Peng RD. Long-term coarse particulate matter exposure is associated with asthma among children in Medicaid. American journal of respiratory and critical care medicine 2018;197(6):737-46. https://doi.org/10.1164/rccm.201706-1267OC
  12. Hamra GB, Guha N, Cohen A, Laden F, Raaschou-Nielsen O, Samet JM, et al. Outdoor particulate matter exposure and lung cancer: a systematic review and meta-analysis. Environmental health perspectives 2014;122(9):906-11.
  13. Hou W, Zhang H, Jiang M, Wu Y, Li T, Cong L, et al. Gu-Ben-Zhi-Ke-Zhong-Yao Alleviated PM2.5-Induced Lung Injury via HMGB1/NF-κB Axis. Journal of Healthcare Engineering 2022;2022:8450673.
  14. Chen L, Guo Y, Qu S, Li K, Yang T, Yang Y, et al. The protective effects of Shengmai formula against myocardial injury induced by ultrafine particulate matter exposure and myocardial ischemia are mediated by the PI3K/AKT/p38 MAPK/Nrf2 pathway. Frontiers in Pharmacology 2021:12:619311.
  15. Sharma P, Upadhyay E, Kotecha M. A Systematic Review on Particulate Matter Induced Disease and Herbs Useful in Lung Tissue Damage. Journal of Survey in Fisheries Sciences 2023;10(2S):933-47.
  16. Jing Y, Zhang H, Cai Z, Zhao Y, Wu Y, Zheng X, et al. Bufei huoxue capsule attenuates PM2.5-induced pulmonary inflammation in mice. Evidence-Based Complementary and Alternative Medicine 2017;2017:1575793.
  17. Lee CW, Yang WK, Lyu YR, Kim SH, Park YC. Effects of Gwaruhaengryeon-hwan on COPD and Particulate Matter Induced Lung Injury on a Mouse Model. The Journal of Internal Korean Medicine 2017;38(3):353-66. https://doi.org/10.22246/jikm.2017.38.3.353
  18. Zhang J, Li S, Sun L, Chen Y, Zhang L, Zhang Z. Therapeutic effects of stemonine on particulate matter 2.5-induced chronic obstructive pulmonary disease in mice. Experimental and Therapeutic Medicine 2017;14(5):4453-59.
  19. Lee WH, Bae JS. Inhibitory effects of Kyung-Ok-Ko, traditional herbal prescription, on particulate matter-induced vascular barrier disruptive responses. International journal of environmental health research 2019;29(3):301-11.
  20. Liu T, Zhang P, Ling Y, Hu G, Gu J, Yang H, et al. Protective effect of Colla corii asini against lung injuries induced by intratracheal instillation of artificial fine particles in rats. International journal of molecular sciences 2018;20(1):55.
  21. Liu Z, Wang W, Cao F, Liu S, Zou X, Li G, et al. Number 2 Feibi recipe reduces PM2.5-induced lung injury in rats. Evidence-Based Complementary and Alternative Medicine 2018;2018:3674145.
  22. Xia Y, Dolgor S, Jiang S, Fan R, Wang Y, Wang Y, et al. YiQiFuMai lyophilized injection attenuates particulate matter-induced acute lung injury in mice via TLR4-mTOR-autophagy pathway. Biomedicine & Pharmacotherapy 2018;108:906-13. https://doi.org/10.1016/j.biopha.2018.09.088
  23. Zhang JB, Zhang L, Li SQ, Hou AH, Liu WC, Dai LL. Tubeimoside I attenuates inflammation and oxidative damage in a mice model of PM2.5-induced pulmonary injury. Experimental and Therapeutic Medicine 2018;15(2):1602-7.
  24. Fei Y, Zhao B, Yin Q, Qiu Y, Ren G, Wang B, et al. Ma Xing Shi Gan decoction attenuates PM2.5 induced lung injury via inhibiting HMGB1/TLR4/NFκB signal pathway in rat. Frontiers in Pharmacology 2019;10:1361.
  25. Lee WH, Ku SK, Kim JE, Choi GE, Song GY, Bae JS. Pulmonary protective functions of rare ginsenoside Rg4 on particulate matter-induced inflammatory responses. Biotechnology and Bioprocess Engineering 2019;24(3):445-53. https://doi.org/10.1007/s12257-019-0096-4
  26. Li C, Chen J, Yuan W, Zhang W, Chen H, Tan H. Preventive effect of ursolic acid derivative on particulate matter 2.5-induced chronic obstructive pulmonary disease involves suppression of lung inflammation. IUBMB life 2020;72(4):632-40. https://doi.org/10.1002/iub.2201
  27. Xu Y, Wang F, Guo H, Wang S, Ni S, Zhou Y, et al. Antitussive and anti-inflammatory dual-active agents developed from natural product lead compound 1-methylhydantoin. Molecules 2019;24(13):2355.
  28. Han SH, Joo IH, Lee SB, Kim DH, Hyun JM, Park JM. Effects of Nature Herb Mixture Containing Laminaria japonica Areschoung on Fine Dust-induced Bronchitis in Mice. Journal of Physiology & Pathology in Korean Medicine 2020;34(5):245-54. https://doi.org/10.15188/kjopp.2020.10.34.5.245
  29. Lee YS, Min DE, Park SY, Lee JY, Bae HS. Standardized herbal extract PM014 alleviates fine dust-induced lung inflammation in mice. BMC Complementary Medicine and Therapies 2020;20(1):270.
  30. Wang Y, Zhao B, Fei Y, Yin Q, Zhu J, Ren G, et al. Ma xing shi gan decoction eliminates PM2.5-induced lung injury by reducing pulmonary cell apoptosis through Akt/mTOR/p70S6K pathway in rats. Bioscience Reports 2020;40(7):BSR20193738.
  31. Wang Y, Fei Y, Zhao B, Yin Q, Zhu J, Ren G, et al. Ma Xing Shi Gan decoction protects against PM2.5-induced lung injury through suppression of epithelial-to-mesenchymal transition (EMT) and epithelial barrier disruption. Evidence-Based Complementary and Alternative Medicine 2020;2020:7176589.
  32. Yang WK, Lyu YR, Kim SH, Chae SW, Kim KM, Jung IC, et al. Protective Effect of GHX02 Extract on Particulate Matter-Induced Lung Injury. Journal of medicinal food 2020;23(6):611-32. https://doi.org/10.1089/jmf.2019.4568
  33. Pei C, Wang F, Huang D, Shi S, Wang X, Wang Y, et al. Astragaloside IV protects from PM2.5-induced lung injury by regulating autophagy via inhibition of PI3K/Akt/mTOR signaling in vivo and in vitro. Journal of inflammation research 2021;14:4707-21. https://doi.org/10.2147/JIR.S312167
  34. Wang Y, Wu Y, Zhang J, Tang J, Fan R, Li F, et al. Ruscogenin attenuates particulate matter-induced acute lung injury in mice via protecting pulmonary endothelial barrier and inhibiting TLR4 signaling pathway. Acta Pharmacologica Sinica 2021;42(5):726-34. https://doi.org/10.1038/s41401-020-00502-6
  35. Cao L, Lin H, Li Q, Han S, Yin H, Zhang N, et al. Study on lung injury caused by fine particulate matter and intervention effect of rhodiola wallichiana. Evidence-Based Complementary and Alternative Medicine 2022;2022:3693231.
  36. Deng L, Ma M, Li S, Zhou L, Ye S, Wang J, et al. Protective effect and mechanism of baicalin on lung inflammatory injury in BALB/cJ mice induced by PM2.5. Ecotoxicology and Environmental Safety 2022;248:114329.
  37. Huang D, Shi S, Wang Y, Wang X, Shen Z, Wang M, et al. Astragaloside IV alleviates PM2.5-caused lung toxicity by inhibiting inflammasome-mediated pyroptosis via NLRP3/caspase-1 axis inhibition in mice. Biomedicine & Pharmacotherapy 2022;150:112978.
  38. Kim CY, Ryu SH, Choi HJ, Park DH, Bae JS. The Inhibitory Functions of Sparstolonin B against Ambient Fine Particulate Matter Induced Lung Injury. Biotechnology and Bioprocess Engineering 2022;27(6):949-60. https://doi.org/10.1007/s12257-022-0286-3
  39. Kim SH, Kim MJ, Shin MR, Roh SS, Kim SH, Park HJ. Respiratory Protective Effect of a RML on PM10D-induced Lung Injury Mouse Model. The Korea Journal of Herbology 2022;37(3):29-39. https://doi.org/10.6116/KJH.2022.37.3.29.
  40. Lee JS, Ree J, Kim HJ, Kim HJ, Kim WJ, Choi TG, et al. Anti-Apoptotic and Anti-Inflammatory Effects of an Ethanolic Extract of Lycium chinense Root against Particulate Matter 10-Induced Cell Death and Inflammation in RBL-2H3 Basophil Cells and BALB/c Mice. Plants 2022;11(19):2485.
  41. Park SM, Jung CJ, Lee DG, Choi BR, Ku TH, La IJ, et al. Adenophora Stricta Root Extract Protects Lung Injury from Exposure to Particulate Matter 2.5 in Mice. Antioxidants 2022;11(7):1376.
  42. Wang Y, Shen Z, Zhao S, Huang D, Wang X, Wu Y, et al. Sipeimine ameliorates PM2.5-induced lung injury by inhibiting ferroptosis via the PI3K/Akt/Nrf2 pathway: A network pharmacology approach. Ecotoxicology and Environmental Safety 2022;239:113615.
  43. Yang WK, Kim SW, Youn SH, Hyun SH, Han CK, Park YC, et al. Respiratory protective effects of Korean red ginseng in a mouse model of particulate matter 4-induced airway inflammation. Journal of Ginseng Research 2023;47(1):81-8. https://doi.org/10.1016/j.jgr.2022.05.008
  44. Wang P, Liu H, Fan X, Zhu Z, Zhu Y. Effect of San'ao decoction on aggravated asthma mice model induced by PM2.5 and TRPA1/TRPV1 expressions. Journal of ethnopharmacology 2019;236:82-90. https://doi.org/10.1016/j.jep.2019.02.043
  45. Nam YK, Jin SC, Kim MH, Choi LY, Lee YB, Yang WM. Banhahubak-Tang tablet, a standardized medicine attenuates allergic asthma via inhibition of janus kinase 1 (JAK1)/signal transducer and activator of transcription 6 (STAT6) signal pathway. Molecules 2020;25(9):2206.
  46. Li J, Wang J, Li Y, Zhao P, Tian Y, Liu X, et al. Effective-component compatibility of Bufei Yishen formula protects COPD rats against PM2.5-induced oxidative stress via miR-155/FOXO3a pathway. Ecotoxicology and Environmental Safety 2021;228:112918.
  47. Han JM, Kim MH, Choi LY, Kim GS, Yang WM. Exploring the Potential Effects and Mechanisms of Asarum sieboldii Radix Essential Oil for Treatment of Asthma. Pharmaceutics 2022;14(3):558.
  48. Ko HM, Choi SH, Jee W, Lee SH, Park DI, Jung JH, et al. Rosa laevigata Attenuates Allergic Asthma Exacerbated by Water-Soluble PM by Downregulating the MAPK Pathway. Frontiers in Pharmacology 2022;13:925502.
  49. Pope CA 3rd. Mortality effects of longer term exposures to fine particulate air pollution: review of recent epidemiological evidence. Inhalation toxicology 2007;19(sup1):33-8. https://doi.org/10.1080/08958370701492961
  50. Loomis D, Huang W, Chen G. The International Agency for Research on Cancer (IARC) evaluation of the carcinogenicity of outdoor air pollution: focus on China. Chinese journal of cancer 2014;33(4):189-96. https://doi.org/10.5732/cjc.014.10028
  51. Kim KN, Kim ST, Lim YH, Song IG, Hong YC. Effects of short-term fine particulate matter exposure on acute respiratory infection in children. International journal of hygiene and environmental health 2020;229:113571.
  52. Turner MC, Krewski D, Pope CA 3rd, Chen Y, Gapstur SM, Thun MJ. Long-term ambient fine particulate matter air pollution and lung cancer in a large cohort of never-smokers. American journal of respiratory and critical care medicine 2011;184(12):1374-81. https://doi.org/10.1164/rccm.201106-1011OC
  53. Yeo MJ, Kim YP. Trends of the PM10 concentrations and high PM10 concentration cases in Korea. Journal of Korean Society for Atmospheric Environment 2019;35(2):249-64. https://doi.org/10.5572/KOSAE.2019.35.2.249
  54. Chen R, Zhang J, Pang Y, Liu Q, Peng J, Lin X, et al. Qianjinweijing Decoction Protects Against Fine Particulate Matter Exposure-mediated Lung Function Disorder. Frontiers in Pharmacology 2022;13:873055.
  55. Lyu YR, Kim JH, Yang WK, Kim SH, Park YC. Clinical Research Trends in Respiratory Diseases Related to Particulate Matter. The Journal of Internal Korean Medicine 2019;40(3):443-57. https://doi.org/10.22246/jikm.2019.40.3.443
  56. Hadei M, Naddafi K. Cardiovascular effects of airborne particulate matter: a review of rodent model studies. Chemosphere 2020;242:125204.
  57. Reiss Y, Proudfoot AE, Power CA, Campbell JJ, Butcher EC. CC chemokine receptor (CCR) 4 and the CCR10 ligand cutaneous T cell-attracting chemokine (CTACK) in lymphocyte trafficking to inflamed skin. The Journal of experimental medicine 2001;194(10):1541-7. https://doi.org/10.1084/jem.194.10.1541
  58. Li Y, Li SY, Li JS, Deng L, Tian YG, Jiang SL, et al. A rat model for stable chronic obstructive pulmonary disease induced by cigarette smoke inhalation and repetitive bacterial infection. Biological and Pharmaceutical Bulletin 2012;35(10):1752-60. https://doi.org/10.1248/bpb.b12-00407
  59. Curbani F, de Oliveira Busato F, do Nascimento MM, Olivieri DN, Tadokoro CE. Inhale, exhale: Why particulate matter exposure in animal models are so acute? Environmental Pollution 2019;251:230-7. https://doi.org/10.1016/j.envpol.2019.04.084
  60. Lee HJ, Jeong YM, Kim ST, Lee WS. Atmospheric circulation patterns associated with particulate matter over South Korea and their future projection. Journal of Climate Change Research 2018;9(4):423-33. https://doi.org/10.15531/KSCCR.2018.9.4.423
  61. Ahmed MH, Hassan A. Dexamethasone for the treatment of coronavirus disease (COVID-19): a review. SN comprehensive clinical medicine 2020;2(12):2637-46. https://doi.org/10.1007/s42399-020-00610-8
  62. Villar J, Ferrando C, Martinez D, Ambros A, Munoz T, Soler JA, et al. Dexamethasone treatment for the acute respiratory distress syndrome: a multicentre, randomised controlled trial. The Lancet Respiratory Medicine 2020;8(3):267-76. https://doi.org/10.1016/S2213-2600(19)30417-5
  63. Keeney GE, Gray MP, Morrison AK, Levas MN, Kessler EA, Hill GD, et al. Dexamethasone for acute asthma exacerbations in children: a meta-analysis. Pediatrics 2014;133(3):493-9. https://doi.org/10.1542/peds.2013-2273
  64. Ardestani ME, Kalantary E, Samaiy V, Taherian K. Methyl prednisolone vs dexamethasone in management of COPD exacerbation; a randomized clinical trial. Emergency 2017;5(1):e35.
  65. Vaughan A, Stevanovic S, Jafari M, Rahman M, Bowman RV, Fong KM, et al. The effect of diesel emission exposure on primary human bronchial epithelial cells from a COPD cohort: N-acetylcysteine as a potential protective intervention. Environmental research 2019;170:194-202. https://doi.org/10.1016/j.envres.2018.12.035
  66. Millman M, Millman F, Goldstein I, Mercandetti A. Use of acetylcysteine in bronchial asthma--another look. Annals of allergy 1985;54(4):294-6.
  67. Hsieh CF, Lo C, Liu CH, Lin S, Yen HR, Lin TY, et al. Mechanism by which ma-xing-shi-gan-tang inhibits the entry of influenza virus. Journal of ethnopharmacology 2012;143(1):57-67. https://doi.org/10.1016/j.jep.2012.05.061
  68. Liao YN, Hu WL, Chen HJ, Hung YC. The use of Chinese herbal medicine in the treatment of chronic obstructive pulmonary disease (COPD). The American journal of Chinese medicine 2017;45(02):225-38. https://doi.org/10.1142/S0192415X17500148
  69. Zhang J, Wu C, Gao L, Du G, Qin X. Astragaloside IV derived from Astragalus membranaceus: a research review on the pharmacological effects. Advances in Pharmacology 2020;87:89-112. https://doi.org/10.1016/bs.apha.2019.08.002
  70. Yang X, Wang F. The effect of astragaloside IV on JAK2-STAT6 signalling pathway in mouse model of ovalbumin-induced asthma. Journal of animal physiology and animal nutrition 2019;103(5):1578-84. https://doi.org/10.1111/jpn.13114
  71. Li LC, Xu L, Hu Y, Cui WJ, Cui WH, Zhou WC, et al. Astragaloside IV improves bleomycin-induced pulmonary fibrosis in rats by attenuating extracellular matrix deposition. Frontiers in Pharmacology 2017;8:513.
  72. Ristovski ZD, Miljevic B, Surawski NC, Morawska L, Fong KM, Goh F, et al. Respiratory health effects of diesel particulate matter. Respirology 2012;17(2):201-12. https://doi.org/10.1111/j.1440-1843.2011.02109.x