DOI QR코드

DOI QR Code

ON THE p-ADIC VALUATION OF GENERALIZED HARMONIC NUMBERS

  • Cagatay Altuntas (Department of Mathematics Engineering Faculty of Science and Literature Istanbul Technical University)
  • 투고 : 2022.06.10
  • 심사 : 2022.10.11
  • 발행 : 2023.07.31

초록

For any prime number p, let J(p) be the set of positive integers n such that the numerator of the nth harmonic number in the lowest terms is divisible by this prime number p. We consider an extension of this set to the generalized harmonic numbers, which are a natural extension of the harmonic numbers. Then, we present an upper bound for the number of elements in this set. Moreover, we state an explicit condition to show the finiteness of our set, together with relations to Bernoulli and Euler numbers.

키워드

과제정보

We are grateful to the referee for the comments which improved the presentation and quality of the paper.

참고문헌

  1. E. Alkan, H. Goral, and D. C. Sertba,s, Hyperharmonic numbers can rarely be integers, Integers 18 (2018), Paper No. A43, 15 pp.
  2. C. Babbage, Demonstration of a theorem relating to prime numbers, Edinburgh Philosophical J. 1 (1819), 46-49.
  3. D. W. Boyd, A p-adic study of the partial sums of the harmonic series, Experiment. Math. 3 (1994), no. 4, 287-302. http://projecteuclid.org/euclid.em/1048515811 1048515811
  4. J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus, New York, 1996. https://doi.org/10.1007/978-1-4612-4072-3
  5. A. Eswarathasan and E. Levine, p-integral harmonic sums, Discrete Math. 91 (1991), no. 3, 249-257. https://doi.org/10.1016/0012-365X(90)90234-9
  6. I. M. Gessel, Wolstenholme revisited, Amer. Math. Monthly 105 (1998), no. 7, 657-658. https://doi.org/10.2307/2589252
  7. J. W. L. Glaisher, On the residues of the sums of products of the first p - 1, and their powers, to modulus p2 or p3, Q. J. Math. 31 (1900), 321-353.
  8. J. W. L. Glaisher, On the residues of the sums of the inverse powers of numbers in arithmetical progression, Q. J. Math. 32 (1901), 271-288.
  9. H. Goral and D. C. Sertbas, Almost all hyperharmonic numbers are not integers, J. Number Theory 171 (2017), 495-526. https://doi.org/10.1016/j.jnt.2016.07.023
  10. H. Goral and D. C. Sertbas, Divisibility properties of hyperharmonic numbers, Acta Math. Hungar. 154 (2018), no. 1, 147-186. https://doi.org/10.1007/s10474-017-0766-7
  11. H. Goral and D. C. Sertbas, A congruence for some generalized harmonic type sums, Int. J. Number Theory 14 (2018), no. 4, 1033-1046. https://doi.org/10.1142/S1793042118500628
  12. H. Goral and D. C. Sertbas, Euler sums and non-integerness of harmonic type sums, Hacet. J. Math. Stat. 49 (2020), no. 2, 586-598. https://doi.org/10.15672/hujms.544489
  13. H. Goral and D. C. Sertbas, Applications of class numbers and Bernoulli numbers to harmonic type sums, Bull. Korean Math. Soc. 58 (2021), no. 6, 1463-1481. https://doi.org/10.4134/BKMS.b201045
  14. E. Lehmer, On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson, Ann. of Math. (2) 39 (1938), no. 2, 350-360. https://doi.org/10.2307/1968791
  15. R. Mestrovic, Wolstenholme's theorem: Its generalizations and extensions in the last hundred and fifty years (1862-2012), https://arxiv.org/abs/1111.3057.
  16. R. Mestrovic, A search for primes p such that the Euler number Ep-3 is divisible by p, Math. Comp. 83 (2014), no. 290, 2967-2976. https://doi.org/10.1090/S0025-5718-2014-02814-7
  17. P. Ribenboim, 13 lectures on Fermat's last theorem, Springer-Verlag, New York, 1979.
  18. SageMath, the Sage Mathematics Software System (Version 8.3), The Sage Developers, 2018. http://www.sagemath.org
  19. C. Sanna, On the p-adic valuation of harmonic numbers, J. Number Theory 166 (2016), 41-46. https://doi.org/10.1016/j.jnt.2016.02.020
  20. D. C. Sertba,s, Hyperharmonic integers exist, C. R. Math. Acad. Sci. Paris 358 (2020), no. 11-12, 1179-1185. https://doi.org/10.5802/crmath.137
  21. J. Wolstenholme, On certain properties of prime numbers, Quart. J. Pure Appl. Math. 5 (1862), 35-39.
  22. B.-L. Wu and Y.-G. Chen, On certain properties of harmonic numbers, J. Number Theory 175 (2017), 66-86. https://doi.org/10.1016/j.jnt.2016.11.027
  23. J. Zhao, Finiteness of p-divisible sets of multiple harmonic sums, Ann. Sci. Math. Quebec 36 (2012), no. 1, 259-283 (2013).