DOI QR코드

DOI QR Code

RESIDUAL SUPERSINGULAR IWASAWA THEORY OVER QUADRATIC IMAGINARY FIELDS

  • Parham Hamidi (Department of Mathematics The University of British Columbia)
  • Received : 2022.07.04
  • Accepted : 2023.01.26
  • Published : 2023.07.31

Abstract

Let p be an odd prime. Let E be an elliptic curve defined over a quadratic imaginary field, where p splits completely. Suppose E has supersingular reduction at primes above p. Under appropriate hypotheses, we extend the results of [17] to ℤ2p-extensions. We define and study the fine double-signed residual Selmer groups in these settings. We prove that for two residually isomorphic elliptic curves, the vanishing of the signed 𝜇-invariants of one elliptic curve implies the vanishing of the signed 𝜇-invariants of the other. Finally, we show that the Pontryagin dual of the Selmer group and the double-signed Selmer groups have no non-trivial pseudo-null submodules for these extensions.

Keywords

Acknowledgement

The author would like to thank Sujatha Ramdorai for suggesting this problem and her encouragement. The author also wishes to thank the anonymous referee for the detailed comments and corrections that helped improve this article.

References

  1. P. N. Balister and S. Howson, Note on Nakayama's lemma for compact Λ-modules, Asian J. Math. 1 (1997), no. 2, 224-229. https://doi.org/10.4310/AJM.1997.v1.n2.a2 
  2. J. Coates and R. Sujatha, Galois cohomology of elliptic curves, Tata Institute of Fundamental Research Lectures on Mathematics, vol. 88, 2000. 
  3. J. Coates and R. Sujatha, Fine Selmer groups of elliptic curves over p-adic Lie extensions, Math. Ann. 331 (2005), no. 4, 809-839. https://doi.org/10.1007/s00208-004-0609-z 
  4. J. Coates and R. Sujatha, Galois cohomology of elliptic curves, Published by Narosa Publishing House, New Delhi; for the Tata Institute of Fundamental Research, Mumbai, second edition, 2010. 
  5. D. Eisenbud, Commutative Algebra, Springer-Verlag, New York, 1995. 
  6. R. Greenberg, Iwasawa theory for p-adic representations, In Algebraic number theory, volume 17 of Adv. Stud. Pure Math., pages 97-137. Academic Press, Boston, MA, 1989. 
  7. R. Greenberg and V. Vatsal, On the Iwasawa invariants of elliptic curves, Invent. Math. 142 (2000), no. 1, 17-63. https://doi.org/10.1007/s002220000080 
  8. Y. Hachimori and T. Ochiai, Notes on non-commutative Iwasawa theory, Asian J. Math. 14 (2010), no. 1, 11-17. https://doi.org/10.4310/AJM.2010.v14.n1.a2 
  9. T. Honda, On the theory of commutative formal groups, J. Math. Soc. Japan 22 (1970), 213-246. https://doi.org/10.2969/jmsj/02220213 
  10. U. Jannsen, A spectral sequence for Iwasawa adjoints, Munster J. Math. 7 (2014), no. 1, 135-148. 
  11. B. D. Kim, The Iwasawa invariants of the plus/minus Selmer groups, Asian J. Math. 13 (2009), no. 2, 181-190. https://doi.org/10.4310/AJM.2009.v13.n2.a2 
  12. S. Kobayashi, Iwasawa theory for elliptic curves at supersingular primes, Invent. Math. 152 (2003), no. 1, 1-36. https://doi.org/10.1007/s00222-002-0265-4 
  13. A. Lei and M. F. Lim, Akashi series and Euler characteristics of signed Selmer groups of elliptic curves with semistable reduction at primes above p, J. Th'eor. Nombres Bordeaux 33 (2021), no. 3, part 2, 997-1019.  https://doi.org/10.5802/jtnb.1185
  14. A. Lei and F. E. I. Sprung, Ranks of elliptic curves over ℤ2p-extensions, Israel J. Math. 236 (2020), no. 1, 183-206. https://doi.org/10.1007/s11856-020-1969-0 
  15. A. Lei and R. Sujatha, On Selmer groups in the supersingular reduction case, Tokyo J. Math. 43 (2020), no. 2, 455-479. https://doi.org/10.3836/tjm/1502179319 
  16. J. Neukirch, A. Schmidt, and K. Wingberg, Cohomology of number fields, volume 323 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, second edition, 2008. 
  17. F. Nuccio Mortarino Majno di Capriglio and R. Sujatha, Residual supersingular Iwasawa theory and signed Iwasawa invariants, arXiv:1911.10649v2 [math.NT], 2019. 
  18. Y. Ochi and O. Venjakob, On the ranks of Iwasawa modules over p-adic Lie extensions, Math. Proc. Cambridge Philos. Soc. 135 (2003), no. 1, 25-43. https://doi.org/10.1017/S0305004102006564 
  19. P. Schneider and O. Venjakob, Localizations and completions of skew power series rings, Amer. J. Math. 132 (2010), no. 1, 1-36. https://doi.org/10.1353/ajm.0.0089 
  20. The Stacks project authors, The stacks project, https://stacks.math.columbia.edu, 2022. 
  21. O. Venjakob, On the structure theory of the Iwasawa algebra of a p-adic Lie group, J. Eur. Math. Soc. (JEMS) 4 (2002), no. 3, 271-311. https://doi.org/10.1007/s100970100038 
  22. L. C. Washington, Introduction to Cyclotomic Fields, Springer-Verlag, New York, 1997. 
  23. L. C. Washington, Elliptic Curves, Chapman & Hall/CRC, Boca Raton, FL, second edition, 2008.