DOI QR코드

DOI QR Code

HYPERSURFACES WITH PRESCRIBED MEAN CURVATURE IN MEASURE METRIC SPACE

  • Zhengmao Chen (School of Mathematics and Statistics Guangxi Normal University)
  • 투고 : 2022.07.31
  • 심사 : 2022.11.08
  • 발행 : 2023.07.31

초록

For any given function f, we focus on the so-called prescribed mean curvature problem for the measure e-f(|x|2)dx provided thate-f(|x|2) ∈ L1(ℝn+1). More precisely, we prove that there exists a smooth hypersurface M whose metric is ds2 = dρ2 + ρ2d𝜉2 and whose mean curvature function is ${\frac{1}{n}}(\frac{u^p}{{\rho}^{\beta}})e^{f({\rho}^2)}{\psi}(\xi)$ for any given real constants p, β and functions f and ψ where u and ρ are the support function and radial function of M, respectively. Equivalently, we get the existence of a smooth solution to the following quasilinear equation on the unit sphere 𝕊n, $${\sum_{i,j}}({{\delta}_{ij}-{\frac{{\rho}_i{\rho}_j}{{\rho}^2+|{\nabla}{\rho}|^2}})(-{\rho}ji+{\frac{2}{{\rho}}}{\rho}j{\rho}i+{\rho}{\delta}_{ji})={\psi}{\frac{{\rho}^{2p+2-n-{\beta}}e^{f({\rho}^2)}}{({\rho}^2+|{\nabla}{\rho}|^2)^{\frac{p}{2}}}}$$ under some conditions. Our proof is based on the powerful method of continuity. In particular, if we take $f(t)={\frac{t}{2}}$, this may be prescribed mean curvature problem in Gauss measure space and it can be seen as an embedded result in Gauss measure space which will be needed in our forthcoming papers on the differential geometric analysis in Gauss measure space, such as Gauss-Bonnet-Chern theorem and its application on positive mass theorem and the Steiner-Weyl type formula, the Plateau problem and so on.

키워드

과제정보

The work was supported by The Science and Technology Project of Guangxi (Guike AD21220114), China Postdoctoral Science Foundation (Grant: No.2021M690773) and Key Laboratory of Mathematical and Statistical Model (Guangxi Normal University), Education Department of Guangxi Zhuang Autonomous Region.

참고문헌

  1. F. J. Almgren, Jr., Plateau's problem: An invitation to varifold geometry, W. A. Benjamin, Inc., New York, 1966.
  2. V. I. Bogachev, Gaussian measures, Mathematical Surveys and Monographs, 62, American Mathematical Society, Providence, RI, 1998. https://doi.org/10.1090/surv/062
  3. C. Borell, The Brunn-Minkowski inequality in Gauss space, Invent. Math. 30 (1975), no. 2, 207-216. https://doi.org/10.1007/BF01425510
  4. H. J. Brascamp and E. H. Lieb, On extensions of the Brunn-Minkowski and PrekopaLeindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation, J. Funct. Anal. 22 (1976), no. 4, 366-389. https://doi.org/10.1016/0022-1236(76)90004-5
  5. Yu. D. Burago and V. A. Zalgaller, Geometric inequalities, translated from the Russian by A. B. Sosinskii, Grundlehren der mathematischen Wissenschaften, 285, Springer-Verlag, Berlin, 1988. https://doi.org/10.1007/978-3-662-07441-1
  6. L. A. Caffarelli, Interior W2,p estimates for solutions of the Monge-Ampere equation, Ann. of Math. (2) 131 (1990), no. 1, 135-150. https://doi.org/10.2307/1971510
  7. L. A. Caffarelli, A localization property of viscosity solutions to the Monge-Ampere equation and their strict convexity, Ann. of Math. (2) 131 (1990), no. 1, 129-134. https://doi.org/10.2307/1971509
  8. J. S. Case, The weighted σk-curvature of a smooth metric measure space, Pacific J. Math. 299 (2019), no. 2, 339-399. https://doi.org/10.2140/pjm.2019.299.339
  9. J. S. Case and Y. Wang, Boundary operators associated to the σk-curvature, Adv. Math. 337 (2018), 83-106. https://doi.org/10.1016/j.aim.2018.08.004
  10. S. Y. Cheng and S. T. Yau, On the regularity of the solution of the n-dimensional Minkowski problem, Comm. Pure Appl. Math. 29 (1976), no. 5, 495-516. https://doi.org/10.1002/cpa.3160290504
  11. D. Cordero-Erausquin and B. Klartag, Moment measures, J. Funct. Anal. 268 (2015), no. 12, 3834-3866. https://doi.org/10.1016/j.jfa.2015.04.001
  12. R. Courant, Dirichlet's principle, conformal mapping, and minimal surfaces, reprint of the 1950 original, Springer-Verlag, New York, 1977.
  13. Q. Dai, N. S. Trudinger, and X.-J. Wang, The mean curvature measure, J. Eur. Math. Soc. (JEMS) 14 (2012), no. 3, 779-800. https://doi.org/10.4171/JEMS/318
  14. Q. Dai, X. Wang, and B. Zhou, A potential theory for the k-curvature equation, Adv. Math. 288 (2016), 791-824. https://doi.org/10.1016/j.aim.2015.11.003
  15. U. Dierkes, S. Hildebrandt, and F. Sauvigny, Minimal surfaces, revised and enlarged second edition, Grundlehren der mathematischen Wissenschaften, 339, Springer, Heidelberg, 2010. https://doi.org/10.1007/978-3-642-11698-8
  16. M. P. do Carmo, Differential geometry of curves & surfaces, Dover Publications, Inc., Mineola, NY, 2016.
  17. H. Federer, Curvature measures, Trans. Amer. Math. Soc. 93 (1959), 418-491. https://doi.org/10.2307/1993504
  18. R. J. Gardner and A. Zvavitch, Gaussian Brunn-Minkowski inequalities, Trans. Amer. Math. Soc. 362 (2010), no. 10, 5333-5353. https://doi.org/10.1090/S0002-9947-2010-04891-3
  19. I. M. Gel'fand, S. G. Gindikin, and M.I. Graev, Integral geometry in affine and projective spaces, J Math. Sci. 18 (1982), no. 1, 39-167. https://doi.org/10.1007/BF01098201
  20. D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001.
  21. E. Giusti, Minimal surfaces and functions of bounded variation, Monographs in Mathematics, 80, Birkhauser Verlag, Basel, 1984. https://doi.org/10.1007/978-1-4684-9486-0
  22. B. Guan and P. Guan, Convex hypersurfaces of prescribed curvatures, Ann. of Math. (2) 156 (2002), no. 2, 655-673. https://doi.org/10.2307/3597202
  23. P. Guan, J. Li, and Y. Li, Hypersurfaces of prescribed curvature measure, Duke Math. J. 161 (2012), no. 10, 1927-1942. https://doi.org/10.1215/00127094-1645550
  24. P. Guan and X.-N. Ma, The Christoffel-Minkowski problem I: Convexity of solutions of a Hessian equation, Invent. Math. 151 (2003), no. 3, 553-577. https://doi.org/10.1007/s00222-002-0259-2
  25. P. Guan, C. Ren, and Z. Wang, Global C2-estimates for convex solutions of curvature equations, Comm. Pure Appl. Math. 68 (2015), no. 8, 1287-1325. https://doi.org/10.1002/cpa.21528
  26. B. Guan and J. Spruck, Boundary-value problems on 𝕊n for surfaces of constant Gauss curvature, Ann. of Math. (2) 138 (1993), no. 3, 601-624. https://doi.org/10.2307/2946558
  27. F. R. Harvey and H. B. Lawson, Jr., On boundaries of complex analytic varieties. I, Ann. of Math. (2) 102 (1975), no. 2, 223-290. https://doi.org/10.2307/1971032
  28. Y. Huang, D. Xi, and Y. Zhao, The Minkowski problem in Gaussian probability space, Adv. Math. 385 (2021), Paper No. 107769, 36 pp. https://doi.org/10.1016/j.aim.2021.107769
  29. J. Jost, Minimal surfaces and Teichmueller theory, Tsing Hua lectures on geometry & analysis (Hsinchu, 1990-1991), 149-211, Int. Press, Cambridge, MA, 1997.
  30. H. Lewy, On differential geometry in the large. I. Minkowski's problem, Trans. Amer. Math. Soc. 43 (1938), no. 2, 258-270. https://doi.org/10.2307/1990042
  31. J. Liu, The Lp-Gaussian Minkowski problem, Calc. Var. Partial Differential Equations 61 (2022), no. 1, Paper No. 28, 23 pp. https://doi.org/10.1007/s00526-021-02141-z
  32. H. Minkowski, Allgemeine Lehrsatzeuber die convexen Polyeder, Nachr. Ges. Wiss. Gottingen, 198-219, 1897.
  33. H. Minkowski, Volumen und Oberflache, Math. Ann. 57 (1903), no. 4, 447-495. https://doi.org/10.1007/BF01445180
  34. C. B. Morrey, Jr., The problem of Plateau on a Riemannian manifold, Ann. of Math. (2) 49 (1948), 807-851. https://doi.org/10.2307/1969401
  35. L. Nirenberg, The Weyl and Minkowski problems in differential geometry in the large, Comm. Pure Appl. Math. 6 (1953), 337-394. https://doi.org/10.1002/cpa.3160060303
  36. R. Osserman, A Survey of Minimal Surfaces, second edition, Dover Publications, Inc., New York, 1986.
  37. M. Petrache and T. Riviere, The resolution of the Yang-Mills Plateau problem in supercritical dimensions, Adv. Math. 316 (2017), 469-540. https://doi.org/10.1016/j.aim.2017.06.012
  38. J. T. Pitts, Existence and regularity of minimal surfaces on Riemannian manifolds, Mathematical Notes, 27, Princeton University Press, Princeton, NJ, 1981.
  39. A. V. Pogorelov, The Minkowski multidimensional problem, translated from the Russian by Vladimir Oliker, Scripta Series in Mathematics, V. H. Winston & Sons, Washington, DC, 1978.
  40. L. A. Santalo, Integral geometry and geometric probability, second edition, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2004. https://doi.org/10.1017/CBO9780511617331
  41. F. Santambrogio, Dealing with moment measures via entropy and optimal transport, J. Funct. Anal. 271 (2016), no. 2, 418-436. https://doi.org/10.1016/j.jfa.2016.04.009
  42. R. Schneider, Convex bodies: the Brunn-Minkowski theory, second expanded edition, Encyclopedia of Mathematics and its Applications, 151, Cambridge University Press, Cambridge, 2014.
  43. R. Schoen and S. T. Yau, On the proof of the positive mass conjecture in general relativity, Comm. Math. Phys. 65 (1979), no. 1, 45-76. http://projecteuclid.org/euclid.cmp/1103904790 103904790
  44. M. Struwe, Plateau's problem and the calculus of variations, Mathematical Notes, 35, Princeton University Press, Princeton, NJ, 1988.
  45. A. E. Treibergs and S. W. Wei, Embedded hyperspheres with prescribed mean curvature, J. Differential Geom. 18 (1983), no. 3, 513-521. http://projecteuclid.org/euclid.jdg/1214437786
  46. N. S. Trudinger and X.-J. Wang, The affine Plateau problem, J. Amer. Math. Soc. 18 (2005), no. 2, 253-289. https://doi.org/10.1090/S0894-0347-05-00475-3
  47. S. T. Yau, Problem section, in Seminar on Differential Geometry, 669-706, Ann. Of Math. Stud., 102, Princeton Univ. Press, Princeton, NJ, 1982.