Acknowledgement
이 논문(저서)은 2022학년도 경북대학교 신임교원 정착연구비에 의하여 연구되었음.
References
- M. G. Lawrence and P. J. Crutzen, Influence of NO(x) emissions from ships on tropospheric photochemistry and climate, Nature, 402, 167-170 (1999). https://doi.org/10.1038/46013
- S. C. Anenberg, J. Miller, R. Minjares, L. Du, D. K. Henze, F. Lacey, C. S. Malley, L. Emberson, V. Franco, Z. Klimont, and C. Heyes, Impacts and mitigation of excess diesel-related NOx emissions in 11 major vehicle markets, Nature, 545, 467-471 (2017). https://doi.org/10.1038/nature22086
- X. Yao, L. Zhang, L. Li, L. Liu, Y. Cao, X. Dong, F. Gao, Y. Deng, C. Tang, Z. Chen, L. Dong, and Y. Chen, Investigation of the structure, acidity, and catalytic performance of CuO/Ti0.95Ce0.05O2 catalyst for the selective catalytic reduction of NO by NH3 at low temperature, Appl. Catal. B: Environ., 150-151, 315-329 (2014). https://doi.org/10.1016/j.apcatb.2013.12.007
- L. Han, S. Cai, M. Gao, J. Hasegawa, P. Wang, J. Zhang, L. Shi, and D. Zhang, Selective catalytic reduction of NOx with NH3 by using novel catalysts: State of the art and future prospects, Chem. Rev., 119, 10916-10976 (2019). https://doi.org/10.1021/acs.chemrev.9b00202
- S. Roy, M. S. Hegde, and G. Madras, Catalysis for NOx abatement, Appl. Energy., 86, 2283-2297 (2009). https://doi.org/10.1016/j.apenergy.2009.03.022
- L. Chen, Z. Si, X. Wu, D. Weng, R. Ran, and J. Yu, Rare earth containing catalysts for selective catalytic reduction of NOx with ammonia: A review, J. Rare Earths, 32, 907-917 (2014). https://doi.org/10.1016/S1002-0721(14)60162-9
- B. Shen, F. Wang, B. Zhao, Y. Li, and Y. Wang, The behaviors of V2O5-WO3/TiO2 loaded on ceramic surfaces for NH3-SCR, J. Ind. Eng. Chem., 33, 262-269 (2016). https://doi.org/10.1016/j.jiec.2015.10.004
- J.-K. Lai and I. E. Wachs, A Perspective on the Selective Catalytic Reduction (SCR) of NO with NH3 by Supported V2O5-WO3/TiO2 catalysts, ACS Catal., 8, 6537-6551 (2018). https://doi.org/10.1021/acscatal.8b01357
- A. Marberger, M. Elsener, D. Ferri, and O. Krocher, VOx surface coverage optimization of V2O5/WO3-TiO2 SCR catalysts by variation of the V loading and by aging, Catalysts, 5, 1704-1720 (2015). https://doi.org/10.3390/catal5041704
- F. Nakajima and I. Hamada, The state-of-the-art technology of NOx control, Catal. Today, 29, 109-115 (1996). https://doi.org/10.1016/0920-5861(95)00288-X
- G. Busca, L. Lietti, G. Ramis, and F. Berti, Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review, Appl. Catal. B: Environ., 18, 1-36 (1998). https://doi.org/10.1016/S0926-3373(98)00040-X
- G. He, Z. Lian, Y. Yu, Y. Yang, K. Liu, X. Shi, Z. Yan, W. Shan, and H. He, Polymeric vanadyl species determine the low-temperature activity of V-based catalysts for the SCR of NO with NH3, Sci. Adv., 4, eaau4637 (2018).
- C. Wang, S. Yang, H. Chang, Y. Peng and J. Li, Dispersion of tungsten oxide on SCR performance of V2O5WO3/TiO2: Acidity, surface species and catalytic activity, Chem. Eng. J., 225, 520-527 (2013). https://doi.org/10.1016/j.cej.2013.04.005
- Y. He, M. E. Ford, M. Zhu, Q. Liu, Z. Wu, and I. E. Wachs, Selective catalytic reduction of NO by NH3 with WO3-TiO2 catalysts: Influence of catalyst synthesis method, Appl. Catal. B: Environ., 188, 122-133 (2016).
- Y. He, M. E. Ford, M. Zhu, Q. Liu, U. Tumuluri, Z. Wu, and I. E. Wachs, Influence of catalyst synthesis method on selective catalytic reduction (SCR) of NO by NH3 with V2O5-WO3/TiO2 catalysts. Appl. Catal. B: Environ., 193, 141-150 (2016). https://doi.org/10.1016/j.apcatb.2016.04.022
- J. Liu, Y. Huo, X. Shi, Z. Liu, Y. Shan, Y. Yu, W. Shan, and H. He, Insight into the remarkable enhancement of NH3-SCR performance of Ce-Sn oxide catalyst by tungsten modification, Catal. Today, 410, 36-44 (2023). https://doi.org/10.1016/j.cattod.2022.02.001
- M. Kobayashi and K. Miyoshi, WO3-TiO2 monolithic catalysts for high temperature SCR of NO by NH3: Influence of preparation method on structural and physico-chemical properties, activity and durability, Appl. Catal. B: Environ., 72, 253-261 (2007). https://doi.org/10.1016/j.apcatb.2006.11.007
- L. J. Alemany, L. Lietti, N. Ferlazzo, P. Forzatti, G. Busca, E. Giamello, and F. Bregani, Reactivity and physicochemical characterization of V2O5-WO3/TiO2 De-NOx catalysts, J. Catal., 155, 117-130 (1995). https://doi.org/10.1006/jcat.1995.1193
- P. D. Cozzoli, A. Kornowski, and H. Weller, Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 Nanorods, J. Am. Chem. Soc., 125, 14539-14548
- K. C. Song and S. E. Pratsinis, The effect of alcohol solvents on the porosity and phase composition of titania, J. Colloid Interface Sci., 231, 289-298 (2000). https://doi.org/10.1006/jcis.2000.7147
- Y. Li and Q. Zhong, The characterization and activity of F-doped vanadia/titania for the selective catalytic reduction of NO with NH3 at low temperatures, J. Hazard. Mater., 172, 635-640 (2009). https://doi.org/10.1016/j.jhazmat.2009.07.039
- W. Qu, X. Liu, J. Chen, Y. Dong, X. Tang, and Y. Chen, Single-atom catalysts reveal the dinuclear characteristic of active sites in NO selective reduction with NH3, Nat. Commun., 11, 1532 (2020).
- W. Qu, X. Liu, J. Chen, Y. Dong, X. Tang, and Y. Chen, Location and activity of VOx species on TiO2 particles for NH3-SCR catalysis, Appl. Catal. B: Environ., 278, 119337 (2020).
- J. Cao, X. Yao, L. Chen, K. Kang, M. Fu, and Y. Chen, Effects of different introduction methods of Ce4+ and Zr4+ on denitration performance and anti-K poisoning performance of V2O5-WO3/TiO2 catalyst, J. Rare Earths, 38, 1207-1214 (2020). https://doi.org/10.1016/j.jre.2019.11.005
- W. Zhang, S. Qi, G. Pantaleo, and L. F. Liotta, WO3-V2O5 active oxides for NOx SCR by NH3: Preparation methods, catalysts' composition, and deactivation mechanism-A review, Catalysts, 9, 527 (2019).
- G. Lee, B. Ye, M. J. Lee, S. Y. Chun, B. Jeong, H. D. Kim, J. H. Lee, and T. Kim, Selective catalytic reduction of NOx by NH3 over V2O5-WO3 supported by titanium isopropoxide (TTIP)- treated TiO2, J. Ind. Eng. Chem., 109, 422-430 (2022). https://doi.org/10.1016/j.jiec.2022.02.025
- G. Lee, B. Ye, W. G. Kim, J. I. Jung, K. Y. Park, B. Jeong, H. D. Kim, and T. Kim, V2O5-WO3 catalysts treated with titanium isopropoxide using a one-step co-precipitation method for selective catalytic reduction with NH3, Catal. Today, 411-412, 113924 (2023).
- L. Xu, C. Wang, H. Chang, Q. Wu, T. Zhang, and J. Li, New Insight into SO2 poisoning and regeneration of CeO2-WO3/TiO2 and V2O5-WO3/TiO2 catalysts for low-temperature NH3-SCR, Environ. Sci. Technol., 52, 7064 (2018).
- X. Zhao, Y. Yan, L. Mao, M. Fu, H. Zhao, L. Sun, Y. Xiao, and G. Dong, A relationship between the V4+/V5+ ratio and the surface dispersion, surface acidity, and redox performance of V2O5-WO3/ TiO2 SCR catalysts, RSC Adv., 8, 31081-31093 (2018). https://doi.org/10.1039/C8RA02857E
- J. Melke, J. Martin, M. Bruns, P. Hugenell, A. Schokel, S. M. Isaza, F. Fink, P. Elsasser, and A. Fischer, Investigating the effect of microstructure and surface functionalization of mesoporous N-doped carbons on V4+/V5+ kinetics, ACS Appl. Energy Mater., 3, 11627-11640 (2020). https://doi.org/10.1021/acsaem.0c01489
- K. Li, T. Chen, L. Yan, Y. Dai, Z. Huang, J. Xiong, D. Song, Y. Lv, and Z. Zeng, Design of graphene and silica co-doped titania composites with ordered mesostructure and their simulated sunlight photocatalytic performance towards atrazine degradation, Colloids Surf. A Physicochem., 422, 90-99 (2013). https://doi.org/10.1016/j.colsurfa.2013.01.039
- L. Zong, G. Zhang, J. Zhao, F. Dong, J. Zhang, and Z. Tang, Morphology-controlled synthesis of 3D flower-like TiO2 and the superior performance for selective catalytic reduction of NOx with NH3, Chem. Eng. J., 343, 500-511 (2018). https://doi.org/10.1016/j.cej.2018.03.035
- P. Forzatti, I. Nova, E. Tronconi, A. Kustov, and J. R. Thogersen, Effect of operating variables on the enhanced SCR reaction over a commercial V2O5-WO3/TiO2 catalyst for stationary applications, Catal. Today, 184, 153-159 (2012). https://doi.org/10.1016/j.cattod.2011.11.006
- B. Ye, M. J. Lee, S. Y. Chun, G. Lee., J. Kim., B. Jeong, T. Kim, and H. D. Kim, Promotional effect of surface treated N-TiO2 as support for VOx-based catalysts on the selective catalytic reduction of NO using NH3, Appl. Surf. Sci., 560, 149934 (2021).
- M. Shanmugam, A. Alsalme, A. Alghamdi, and R. Jayavel, Enhanced photocatalytic performance of the graphene-V2O5 nanocomposite in the degradation of methylene blue dye under direct sunlight, ACS Appl. Mater. Interfaces, 7, 14905-14911 (2015). https://doi.org/10.1021/acsami.5b02715
- G. Martra, F. Arena, S. Coluccia, F. Frusteri, and A. Parmaliana, Factors controlling the selectivity of V2O5 supported catalysts in the oxidative dehydrogenation of propane, Catal. Today, 63, 197-207 (2000). https://doi.org/10.1016/S0920-5861(00)00460-0
- F. Jin and Y. Li, A FTIR and TPD examination of the distributive properties of acid sites on ZSM-5 zeolite with pyridine as a probe molecule, Catal. Today, 145, 101-107 (2009). https://doi.org/10.1016/j.cattod.2008.06.007
- D. Mohanadas, N. I. A. Zainudin, and Y. Sulaiman, A copper-based metal-organic framework/tungsten trioxide with improved coloration efficiency for electrochromic application, Chem. Eng. J., 428, 130989 (2022).
- X. Liu, P. Jiang, Y. Chen, Y. Wang, Q. Ding, Z. Sui, H. Chen, Z. Shen, and X. Wu, A basic comprehensive study on synergetic effects among the metal oxides in CeO2-WO3/TiO2 NH3-SCR catalyst, Chem. Eng. J., 421, 127833 (2021).
- P. Karthik, V. Vinesh, A. R. Mahammed Shaheer, and B. Neppolian, Self-doping of Ti3+ in TiO2 through incomplete hydrolysis of titanium (IV) isopropoxide: An efficient visible light sonophotocatalyst for organic pollutants degradation, Appl. Catal. A: Gen., 585, 117208 (2019).
- Z. Liu, S. Zhang, J. Li, J. Zhu, and L. Ma, Novel V2O5-CeO2/TiO2 Catalyst with low vanadium loading for the selective catalytic reduction of NOx by NH3, Appl. Catal. B: Environ., 158-159, 11-19 (2014). https://doi.org/10.1016/j.apcatb.2014.03.049
- S. S. R. Putluru, L. Schill, A. Godiksen, R. Poreddy, S. Mossin, A. D. Jensen, and R. Fehrmann, Promoted V2O5/TiO2 catalysts for selective catalytic reduction of NO with NH3 at low temperatures, Appl. Catal. B: Environ., 183, 282-290 (2016). https://doi.org/10.1016/j.apcatb.2015.10.044
- H. Hu, S. Cai, H. Li, L. Huang, L. Shi, and D. Zhang, In Situ DRIFTs investigation of the low-temperature reaction mechanism over Mn-Doped Co3O4 for the selective catalytic reduction of NOx with NH3, J. Phys. Chem. C, 119, 22924-22933 (2015). https://doi.org/10.1021/acs.jpcc.5b06057
- R. Wu, L. Li, N. Zhang, J. He, L. Song, G. Zhang, Z. Zhang, and H. He, Enhancement of low-temperature NH3-SCR catalytic activity and H2O & SO2 resistance over commercial V2O5- MoO3/TiO2 catalyst by high shear-induced doping of expanded graphite, Catal. Today, 376, 302-310 (2021). https://doi.org/10.1016/j.cattod.2020.04.051
- S. Li, W. Huang, H. Xu, T. Chen, Y. Ke, Z. Qu, and N. Yan, Alkali-induced deactivation mechanism of V2O5-WO3/TiO2 catalyst during selective catalytic reduction of NO by NH3 in aluminum hydrate calcining flue gas, Appl. Catal. B: Environ., 270, 118872 (2020).
- J. Fan, P. Ning, Z. Song, X. Liu, L. Wang, J. Wang, H. Wang, K. Long, and Q. Zhang, Mechanistic aspects of NH3-SCR reaction over CeO2/TiO2-ZrO2-SO42- catalyst: In situ DRIFTS investigation, Chem. Eng. J., 334, 855-863 (2018). https://doi.org/10.1016/j.cej.2017.10.011
- X. Weng, X. Dai, Q. Zeng, Y. Liu, and Z. Wu, DRIFT studies on promotion mechanism of H3PW12O40 in selective catalytic reduction of NO with NH3, J. Colloid Interface Sci., 461, 9-14 (2016). https://doi.org/10.1016/j.jcis.2015.09.004
- W. S. Kijlstra, D. S. Brands, E. K. Poels, and A. Bliek, Mechanism of the selective catalytic reduction of NO with NH3 over MnOx/Al2O3, J. Catal., 171, 208-218 (1997) https://doi.org/10.1006/jcat.1997.1788
- R. Ikan and B. Crammer, Organic chemistry, Compound Detection. In: R. A. Meyers (ed.). Encyclopedia of Physical Science and Technology, 3rd ed., 459-496, Academic Press, Cambridge, United States (2003).