DOI QR코드

DOI QR Code

Titanium Isopropoxide (TTIP) Treatment Strategy for V2O5-WO3/TiO2 SCR Catalysts with a Wide Operating Temperature

넓은 작동 온도범위를 가지는 V2O5-WO3/TiO2 SCR 촉매 개발을 위한 티타늄 이소프로폭사이드(TTIP) 활용 전략

  • Jaeho Lee (Department of Energy Chemical Engineering, Kyungpook National University) ;
  • Gwang-hun Cho (Department of Energy Chemical Engineering, Kyungpook National University) ;
  • Geumyeon Lee (Conformity Management Team, Korea Marine Equipment Research Institute) ;
  • Changyong Yim (Department of Energy Chemical Engineering, Kyungpook National University) ;
  • Young-Sei Lee (Department of Energy Chemical Engineering, Kyungpook National University) ;
  • Taewook Kim (Department of Energy Chemical Engineering, Kyungpook National University)
  • 이재호 (경북대학교 에너지화학공학전공) ;
  • 조광훈 (경북대학교 에너지화학공학전공) ;
  • 이금연 (한국조선해양기자재연구원 적합성운영팀) ;
  • 임창용 (경북대학교 에너지화학공학전공) ;
  • 이영세 (경북대학교 에너지화학공학전공) ;
  • 김태욱 (경북대학교 에너지화학공학전공)
  • Received : 2023.05.04
  • Accepted : 2023.05.26
  • Published : 2023.08.10

Abstract

Selective catalytic reduction (SCR) is the most effective method for reducing nitrogen oxide emissions, but the operating temperature range of V2O5-WO3/TiO2 catalysts is narrow (300~400℃). In this study, a new catalyst with an operating temperature range of 200~450℃ was developed. The catalyst poison, ammonium bisulfate, generated during the SCR process can be removed by heating above 350℃. To increase the number of active sites and promote the dispersion of active materials, titanium isopropoxide (TTIP) treatment was performed on the TiO2 support with various TTIP/TiO2 mass ratios. Among them, the 5 wt% TTIP loaded catalyst showed improved performance due to higher thermal stability caused by high W dispersion and the formation of V5+. In addition, the 5 wt% TTIP-loaded catalyst prepared by a one-step co-precipitation method showed greater V-OH and W-OH dispersion and enhanced interactions in contrast to conventional methods, resulting in higher catalytic activity at lower temperatures. This review article aims to provide an accessible explanation for researchers investigating how to improve the surface properties of TiO2 catalysts using TTIP.

선택적 촉매 환원(SCR)은 질소산화물 배출을 줄이는 가장 효과적인 방법이지만, V2O5-WO3/TiO2 촉매가 좁은 작동온도 (300~400℃) 범위를 가지기 때문에, V2O5-WO3/TiO2 촉매의 작동 온도범위가 200~450℃인 새로운 촉매를 개발하였다. SCR 과정에서 생성되는 촉매 독인 황산암모늄은 350℃ 이상으로 가열함으로써 제거할 수 있다. 촉매 활성 부위의 수를 증가시키고 활성 물질의 분산을 촉진하기 위해 TiO2 지지체에 티타늄 이소프로폭사이드(TTIP) 처리를 여러 TTIP/TiO2 질량비로 진행하였다. 그 중 5 wt% TTIP 부하에서 높은 W 분산성으로 인해 열 안정성이 증가하였고 V5+가 형성되어 최적의 성능을 보였다. 5 wt% TTIP 부하로 처리된 촉매를 One-step co-precipitation으로 제조하였을 때 기존의 방법보다 더 나은 V-OH와 W-OH 분산 및 상호작용 향상이 나타나 더 낮은 온도에서 높은 촉매 활성으로 인해 향상된 성능을 보였다. 이를 향후 TTIP를 이용하여 TiO2촉매의 표면을 개선하려는 연구자에게 이해하기 쉽게 설명하고자 하였다.

Keywords

Acknowledgement

이 논문(저서)은 2022학년도 경북대학교 신임교원 정착연구비에 의하여 연구되었음.

References

  1. M. G. Lawrence and P. J. Crutzen, Influence of NO(x) emissions from ships on tropospheric photochemistry and climate, Nature, 402, 167-170 (1999). https://doi.org/10.1038/46013
  2. S. C. Anenberg, J. Miller, R. Minjares, L. Du, D. K. Henze, F. Lacey, C. S. Malley, L. Emberson, V. Franco, Z. Klimont, and C. Heyes, Impacts and mitigation of excess diesel-related NOx emissions in 11 major vehicle markets, Nature, 545, 467-471 (2017). https://doi.org/10.1038/nature22086
  3. X. Yao, L. Zhang, L. Li, L. Liu, Y. Cao, X. Dong, F. Gao, Y. Deng, C. Tang, Z. Chen, L. Dong, and Y. Chen, Investigation of the structure, acidity, and catalytic performance of CuO/Ti0.95Ce0.05O2 catalyst for the selective catalytic reduction of NO by NH3 at low temperature, Appl. Catal. B: Environ., 150-151, 315-329 (2014). https://doi.org/10.1016/j.apcatb.2013.12.007
  4. L. Han, S. Cai, M. Gao, J. Hasegawa, P. Wang, J. Zhang, L. Shi, and D. Zhang, Selective catalytic reduction of NOx with NH3 by using novel catalysts: State of the art and future prospects, Chem. Rev., 119, 10916-10976 (2019). https://doi.org/10.1021/acs.chemrev.9b00202
  5. S. Roy, M. S. Hegde, and G. Madras, Catalysis for NOx abatement, Appl. Energy., 86, 2283-2297 (2009). https://doi.org/10.1016/j.apenergy.2009.03.022
  6. L. Chen, Z. Si, X. Wu, D. Weng, R. Ran, and J. Yu, Rare earth containing catalysts for selective catalytic reduction of NOx with ammonia: A review, J. Rare Earths, 32, 907-917 (2014). https://doi.org/10.1016/S1002-0721(14)60162-9
  7. B. Shen, F. Wang, B. Zhao, Y. Li, and Y. Wang, The behaviors of V2O5-WO3/TiO2 loaded on ceramic surfaces for NH3-SCR, J. Ind. Eng. Chem., 33, 262-269 (2016). https://doi.org/10.1016/j.jiec.2015.10.004
  8. J.-K. Lai and I. E. Wachs, A Perspective on the Selective Catalytic Reduction (SCR) of NO with NH3 by Supported V2O5-WO3/TiO2 catalysts, ACS Catal., 8, 6537-6551 (2018). https://doi.org/10.1021/acscatal.8b01357
  9. A. Marberger, M. Elsener, D. Ferri, and O. Krocher, VOx surface coverage optimization of V2O5/WO3-TiO2 SCR catalysts by variation of the V loading and by aging, Catalysts, 5, 1704-1720 (2015). https://doi.org/10.3390/catal5041704
  10. F. Nakajima and I. Hamada, The state-of-the-art technology of NOx control, Catal. Today, 29, 109-115 (1996). https://doi.org/10.1016/0920-5861(95)00288-X
  11. G. Busca, L. Lietti, G. Ramis, and F. Berti, Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review, Appl. Catal. B: Environ., 18, 1-36 (1998). https://doi.org/10.1016/S0926-3373(98)00040-X
  12. G. He, Z. Lian, Y. Yu, Y. Yang, K. Liu, X. Shi, Z. Yan, W. Shan, and H. He, Polymeric vanadyl species determine the low-temperature activity of V-based catalysts for the SCR of NO with NH3, Sci. Adv., 4, eaau4637 (2018).
  13. C. Wang, S. Yang, H. Chang, Y. Peng and J. Li, Dispersion of tungsten oxide on SCR performance of V2O5WO3/TiO2: Acidity, surface species and catalytic activity, Chem. Eng. J., 225, 520-527 (2013). https://doi.org/10.1016/j.cej.2013.04.005
  14. Y. He, M. E. Ford, M. Zhu, Q. Liu, Z. Wu, and I. E. Wachs, Selective catalytic reduction of NO by NH3 with WO3-TiO2 catalysts: Influence of catalyst synthesis method, Appl. Catal. B: Environ., 188, 122-133 (2016).
  15. Y. He, M. E. Ford, M. Zhu, Q. Liu, U. Tumuluri, Z. Wu, and I. E. Wachs, Influence of catalyst synthesis method on selective catalytic reduction (SCR) of NO by NH3 with V2O5-WO3/TiO2 catalysts. Appl. Catal. B: Environ., 193, 141-150 (2016). https://doi.org/10.1016/j.apcatb.2016.04.022
  16. J. Liu, Y. Huo, X. Shi, Z. Liu, Y. Shan, Y. Yu, W. Shan, and H. He, Insight into the remarkable enhancement of NH3-SCR performance of Ce-Sn oxide catalyst by tungsten modification, Catal. Today, 410, 36-44 (2023). https://doi.org/10.1016/j.cattod.2022.02.001
  17. M. Kobayashi and K. Miyoshi, WO3-TiO2 monolithic catalysts for high temperature SCR of NO by NH3: Influence of preparation method on structural and physico-chemical properties, activity and durability, Appl. Catal. B: Environ., 72, 253-261 (2007). https://doi.org/10.1016/j.apcatb.2006.11.007
  18. L. J. Alemany, L. Lietti, N. Ferlazzo, P. Forzatti, G. Busca, E. Giamello, and F. Bregani, Reactivity and physicochemical characterization of V2O5-WO3/TiO2 De-NOx catalysts, J. Catal., 155, 117-130 (1995). https://doi.org/10.1006/jcat.1995.1193
  19. P. D. Cozzoli, A. Kornowski, and H. Weller, Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 Nanorods, J. Am. Chem. Soc., 125, 14539-14548
  20. K. C. Song and S. E. Pratsinis, The effect of alcohol solvents on the porosity and phase composition of titania, J. Colloid Interface Sci., 231, 289-298 (2000). https://doi.org/10.1006/jcis.2000.7147
  21. Y. Li and Q. Zhong, The characterization and activity of F-doped vanadia/titania for the selective catalytic reduction of NO with NH3 at low temperatures, J. Hazard. Mater., 172, 635-640 (2009). https://doi.org/10.1016/j.jhazmat.2009.07.039
  22. W. Qu, X. Liu, J. Chen, Y. Dong, X. Tang, and Y. Chen, Single-atom catalysts reveal the dinuclear characteristic of active sites in NO selective reduction with NH3, Nat. Commun., 11, 1532 (2020).
  23. W. Qu, X. Liu, J. Chen, Y. Dong, X. Tang, and Y. Chen, Location and activity of VOx species on TiO2 particles for NH3-SCR catalysis, Appl. Catal. B: Environ., 278, 119337 (2020).
  24. J. Cao, X. Yao, L. Chen, K. Kang, M. Fu, and Y. Chen, Effects of different introduction methods of Ce4+ and Zr4+ on denitration performance and anti-K poisoning performance of V2O5-WO3/TiO2 catalyst, J. Rare Earths, 38, 1207-1214 (2020). https://doi.org/10.1016/j.jre.2019.11.005
  25. W. Zhang, S. Qi, G. Pantaleo, and L. F. Liotta, WO3-V2O5 active oxides for NOx SCR by NH3: Preparation methods, catalysts' composition, and deactivation mechanism-A review, Catalysts, 9, 527 (2019).
  26. G. Lee, B. Ye, M. J. Lee, S. Y. Chun, B. Jeong, H. D. Kim, J. H. Lee, and T. Kim, Selective catalytic reduction of NOx by NH3 over V2O5-WO3 supported by titanium isopropoxide (TTIP)- treated TiO2, J. Ind. Eng. Chem., 109, 422-430 (2022). https://doi.org/10.1016/j.jiec.2022.02.025
  27. G. Lee, B. Ye, W. G. Kim, J. I. Jung, K. Y. Park, B. Jeong, H. D. Kim, and T. Kim, V2O5-WO3 catalysts treated with titanium isopropoxide using a one-step co-precipitation method for selective catalytic reduction with NH3, Catal. Today, 411-412, 113924 (2023).
  28. L. Xu, C. Wang, H. Chang, Q. Wu, T. Zhang, and J. Li, New Insight into SO2 poisoning and regeneration of CeO2-WO3/TiO2 and V2O5-WO3/TiO2 catalysts for low-temperature NH3-SCR, Environ. Sci. Technol., 52, 7064 (2018).
  29. X. Zhao, Y. Yan, L. Mao, M. Fu, H. Zhao, L. Sun, Y. Xiao, and G. Dong, A relationship between the V4+/V5+ ratio and the surface dispersion, surface acidity, and redox performance of V2O5-WO3/ TiO2 SCR catalysts, RSC Adv., 8, 31081-31093 (2018). https://doi.org/10.1039/C8RA02857E
  30. J. Melke, J. Martin, M. Bruns, P. Hugenell, A. Schokel, S. M. Isaza, F. Fink, P. Elsasser, and A. Fischer, Investigating the effect of microstructure and surface functionalization of mesoporous N-doped carbons on V4+/V5+ kinetics, ACS Appl. Energy Mater., 3, 11627-11640 (2020). https://doi.org/10.1021/acsaem.0c01489
  31. K. Li, T. Chen, L. Yan, Y. Dai, Z. Huang, J. Xiong, D. Song, Y. Lv, and Z. Zeng, Design of graphene and silica co-doped titania composites with ordered mesostructure and their simulated sunlight photocatalytic performance towards atrazine degradation, Colloids Surf. A Physicochem., 422, 90-99 (2013). https://doi.org/10.1016/j.colsurfa.2013.01.039
  32. L. Zong, G. Zhang, J. Zhao, F. Dong, J. Zhang, and Z. Tang, Morphology-controlled synthesis of 3D flower-like TiO2 and the superior performance for selective catalytic reduction of NOx with NH3, Chem. Eng. J., 343, 500-511 (2018). https://doi.org/10.1016/j.cej.2018.03.035
  33. P. Forzatti, I. Nova, E. Tronconi, A. Kustov, and J. R. Thogersen, Effect of operating variables on the enhanced SCR reaction over a commercial V2O5-WO3/TiO2 catalyst for stationary applications, Catal. Today, 184, 153-159 (2012). https://doi.org/10.1016/j.cattod.2011.11.006
  34. B. Ye, M. J. Lee, S. Y. Chun, G. Lee., J. Kim., B. Jeong, T. Kim, and H. D. Kim, Promotional effect of surface treated N-TiO2 as support for VOx-based catalysts on the selective catalytic reduction of NO using NH3, Appl. Surf. Sci., 560, 149934 (2021).
  35. M. Shanmugam, A. Alsalme, A. Alghamdi, and R. Jayavel, Enhanced photocatalytic performance of the graphene-V2O5 nanocomposite in the degradation of methylene blue dye under direct sunlight, ACS Appl. Mater. Interfaces, 7, 14905-14911 (2015). https://doi.org/10.1021/acsami.5b02715
  36. G. Martra, F. Arena, S. Coluccia, F. Frusteri, and A. Parmaliana, Factors controlling the selectivity of V2O5 supported catalysts in the oxidative dehydrogenation of propane, Catal. Today, 63, 197-207 (2000). https://doi.org/10.1016/S0920-5861(00)00460-0
  37. F. Jin and Y. Li, A FTIR and TPD examination of the distributive properties of acid sites on ZSM-5 zeolite with pyridine as a probe molecule, Catal. Today, 145, 101-107 (2009). https://doi.org/10.1016/j.cattod.2008.06.007
  38. D. Mohanadas, N. I. A. Zainudin, and Y. Sulaiman, A copper-based metal-organic framework/tungsten trioxide with improved coloration efficiency for electrochromic application, Chem. Eng. J., 428, 130989 (2022).
  39. X. Liu, P. Jiang, Y. Chen, Y. Wang, Q. Ding, Z. Sui, H. Chen, Z. Shen, and X. Wu, A basic comprehensive study on synergetic effects among the metal oxides in CeO2-WO3/TiO2 NH3-SCR catalyst, Chem. Eng. J., 421, 127833 (2021).
  40. P. Karthik, V. Vinesh, A. R. Mahammed Shaheer, and B. Neppolian, Self-doping of Ti3+ in TiO2 through incomplete hydrolysis of titanium (IV) isopropoxide: An efficient visible light sonophotocatalyst for organic pollutants degradation, Appl. Catal. A: Gen., 585, 117208 (2019).
  41. Z. Liu, S. Zhang, J. Li, J. Zhu, and L. Ma, Novel V2O5-CeO2/TiO2 Catalyst with low vanadium loading for the selective catalytic reduction of NOx by NH3, Appl. Catal. B: Environ., 158-159, 11-19 (2014). https://doi.org/10.1016/j.apcatb.2014.03.049
  42. S. S. R. Putluru, L. Schill, A. Godiksen, R. Poreddy, S. Mossin, A. D. Jensen, and R. Fehrmann, Promoted V2O5/TiO2 catalysts for selective catalytic reduction of NO with NH3 at low temperatures, Appl. Catal. B: Environ., 183, 282-290 (2016). https://doi.org/10.1016/j.apcatb.2015.10.044
  43. H. Hu, S. Cai, H. Li, L. Huang, L. Shi, and D. Zhang, In Situ DRIFTs investigation of the low-temperature reaction mechanism over Mn-Doped Co3O4 for the selective catalytic reduction of NOx with NH3, J. Phys. Chem. C, 119, 22924-22933 (2015). https://doi.org/10.1021/acs.jpcc.5b06057
  44. R. Wu, L. Li, N. Zhang, J. He, L. Song, G. Zhang, Z. Zhang, and H. He, Enhancement of low-temperature NH3-SCR catalytic activity and H2O & SO2 resistance over commercial V2O5- MoO3/TiO2 catalyst by high shear-induced doping of expanded graphite, Catal. Today, 376, 302-310 (2021). https://doi.org/10.1016/j.cattod.2020.04.051
  45. S. Li, W. Huang, H. Xu, T. Chen, Y. Ke, Z. Qu, and N. Yan, Alkali-induced deactivation mechanism of V2O5-WO3/TiO2 catalyst during selective catalytic reduction of NO by NH3 in aluminum hydrate calcining flue gas, Appl. Catal. B: Environ., 270, 118872 (2020).
  46. J. Fan, P. Ning, Z. Song, X. Liu, L. Wang, J. Wang, H. Wang, K. Long, and Q. Zhang, Mechanistic aspects of NH3-SCR reaction over CeO2/TiO2-ZrO2-SO42- catalyst: In situ DRIFTS investigation, Chem. Eng. J., 334, 855-863 (2018). https://doi.org/10.1016/j.cej.2017.10.011
  47. X. Weng, X. Dai, Q. Zeng, Y. Liu, and Z. Wu, DRIFT studies on promotion mechanism of H3PW12O40 in selective catalytic reduction of NO with NH3, J. Colloid Interface Sci., 461, 9-14 (2016). https://doi.org/10.1016/j.jcis.2015.09.004
  48. W. S. Kijlstra, D. S. Brands, E. K. Poels, and A. Bliek, Mechanism of the selective catalytic reduction of NO with NH3 over MnOx/Al2O3, J. Catal., 171, 208-218 (1997) https://doi.org/10.1006/jcat.1997.1788
  49. R. Ikan and B. Crammer, Organic chemistry, Compound Detection. In: R. A. Meyers (ed.). Encyclopedia of Physical Science and Technology, 3rd ed., 459-496, Academic Press, Cambridge, United States (2003).