DOI QR코드

DOI QR Code

Cremastranone-Derived Homoisoflavanes Suppress the Growth of Breast Cancer Cells via Cell Cycle Arrest and Caspase-Independent Cell Death

  • Yeram Choi (Department of Biochemistry, College of Natural Sciences, Chungbuk National University) ;
  • Sangkyu Park (Biotechnology Research Institute, Chungbuk National University) ;
  • Seul Lee (College of Pharmacy, Gachon University) ;
  • Ha-Eun Shin (Department of Biochemistry, College of Natural Sciences, Chungbuk National University) ;
  • Sangil Kwon (College of Pharmacy, Gachon University) ;
  • Jun-Kyu Choi (Biotechnology Research Institute, Chungbuk National University) ;
  • Myeong-Heon Lee (Department of Biochemistry, College of Natural Sciences, Chungbuk National University) ;
  • Seung-Yong Seo (College of Pharmacy, Gachon University) ;
  • Younghee Lee (Department of Biochemistry, College of Natural Sciences, Chungbuk National University)
  • Received : 2023.03.14
  • Accepted : 2023.04.19
  • Published : 2023.09.01

Abstract

Breast cancer is the most common cancer and a frequent cause of cancer-related deaths among women wordlwide. As therapeutic strategies for breast cancer have limitations, novel chemotherapeutic reagents and treatment strategies are needed. In this study, we investigated the anti-cancer effect of synthetic homoisoflavane derivatives of cremastranone on breast cancer cells. Homoisoflavane derivatives, SH-17059 and SH-19021, reduced cell proliferation through G2/M cell cycle arrest and induced caspase-independent cell death. These compounds increased heme oxygenase-1 (HO-1) and 5-aminolevulinic acid synthase 1 (ALAS1), suggesting downregulation of heme. They also induced reactive oxygen species (ROS) generation and lipid peroxidation. Furthermore, they reduced expression of glutathione peroxidase 4 (GPX4). Therefore, we suggest that the SH-17059 and SH-19021 induced the caspase-independent cell death through the accumulation of iron from heme degradation, and the ferroptosis might be one of the potential candidates for caspase-independent cell death.

Keywords

Acknowledgement

This work was supported by grants from the National Research Foundation funded by the Korean government, Ministry of Science, ICT, and Future Planning (NRF-2020R1I1A1A01072992, NRF-2021R1A2C1006767).

References

  1. Basavarajappa, H. D., Lee, B., Lee, H., Sulaiman, R. S., An, H., Magana, C., Shadmand, M., Vayl, A., Rajashekhar, G., Kim, E. Y., Suh, Y. G., Lee, K., Seo, S. Y. and Corson, T. W. (2015) Synthesis and biological evaluation of novel homoisoflavonoids for retinal neovascularization. J. Med. Chem. 58, 5015-5027. https://doi.org/10.1021/acs.jmedchem.5b00449
  2. Basavarajappa, H. D., Sulaiman, R. S., Qi, X., Shetty, T., Sheik Pran Babu, S., Sishtla, K. L., Lee, B., Quigley, J., Alkhairy, S., Briggs, C. M., Gupta, K., Tang, B., Shadmand, M., Grant, M. B., Boulton, M. E., Seo, S. Y. and Corson, T. W. (2017) Ferrochelatase is a therapeutic target for ocular neovascularization. EMBO Mol. Med. 9, 786-801. https://doi.org/10.15252/emmm.201606561
  3. Chiabrando, D., Vinchi, F., Fiorito, V., Mercurio, S. and Tolosano, E. (2014) Heme in pathophysiology: a matter of scavenging, metabolism and trafficking across cell membranes. Front. Pharmacol. 5, 61.
  4. Chiang, S. K., Chen, S. E. and Chang, L. C. (2018) A dual role of heme oxygenase-1 in cancer cells. Int. J. Mol. Sci. 20, 39.
  5. Cragg, G. M. and Pezzuto, J. M. (2016) Natural products as a vital source for the discovery of cancer chemotherapeutic and chemo-preventive agents. Med. Princ. Pract. 25 Suppl 2, 41-59. https://doi.org/10.1159/000443404
  6. Dang, C. V. (2013) MYC, metabolism, cell growth, and tumorigenesis. Cold Spring Harb. Perspect. Med. 3, a014217.
  7. Dix, T. A. and Aikens, J. (1993) Mechanisms and biological relevance of lipid peroxidation initiation. Chem. Res. Toxicol. 6, 2-18. https://doi.org/10.1021/tx00031a001
  8. Dixon, S. J., Lemberg, K. M., Lamprecht, M. R., Skouta, R., Zaitsev, E. M., Gleason, C. E., Patel, D. N., Bauer, A. J., Cantley, A. M., Yang, W. S., Morrison, B., 3rd and Stockwell, B. R. (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060-1072. https://doi.org/10.1016/j.cell.2012.03.042
  9. du Toit, K., Elgorashi, E. E., Malan, S. F., Drewes, S. E., van Staden, J., Crouch, N. R. and Mulholland, D. A. (2005) Anti-inflammatory activity and QSAR studies of compounds isolated from Hyacinthaceae species and Tachiadenus longiflorus Griseb. (Gentianaceae). Bioorg. Med. Chem. 13, 2561-2568. https://doi.org/10.1016/j.bmc.2005.01.036
  10. Fadok, V. A., Voelker, D. R., Campbell, P. A., Cohen, J. J., Bratton, D. L. and Henson, P. M. (1992) Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J. Immunol. 148, 2207-2216. https://doi.org/10.4049/jimmunol.148.7.2207
  11. Ferrandiz, M. L. and Devesa, I. (2008) Inducers of heme oxygenase-1. Curr. Pharm. Des. 14, 473-486. https://doi.org/10.2174/138161208783597399
  12. Fitzwalter, B. E. and Thorburn, A. (2015) Recent insights into cell death and autophagy. FEBS J. 282, 4279-4288. https://doi.org/10.1111/febs.13515
  13. Galluzzi, L., Vitale, I., Aaronson, S. A., Abrams, J. M., Adam, D., Agostinis, P., Alnemri, E. S., Altucci, L., Amelio, I., Andrews, D. W., Annicchiarico-Petruzzelli, M., Antonov, A. V., Arama, E., Baehrecke, E. H., Barlev, N. A., Bazan, N. G., Bernassola, F., Bertrand, M. J. M., Bianchi, K., Blagosklonny, M. V., Blomgren, K., Borner, C., Boya, P., Brenner, C., Campanella, M., Candi, E., CarmonaGutierrez, D., Cecconi, F., Chan, F. K. M., Chandel, N. S., Cheng, E. H., Chipuk, J. E., Cidlowski, J. A., Ciechanover, A., Cohen, G. M., Conrad, M., Cubillos-Ruiz, J. R., Czabotar, P. E., D'Angiolella, V., Dawson, T. M., Dawson, V. L., De Laurenzi, V., De Maria, R., Debatin, K. M., DeBerardinis, R. J., Deshmukh, M., Di Daniele, N., Di Virgilio, F., Dixit, V. M., Dixon, S. J., Duckett, C. S., Dynlacht, B. D., El-Deiry, W. S., Elrod, J. W., Fimia, G. M., Fulda, S., GarciaSaez, A. J., Garg, A. D., Garrido, C., Gavathiotis, E., Golstein, P., Gottlieb, E., Green, D. R., Greene, L. A., Gronemeyer, H., Gross, A., Hajnoczky, G., Hardwick, J. M., Harris, I. S., Hengartner, M. O., Hetz, C., Ichijo, H., Jaattela, M., Joseph, B., Jost, P. J., Juin, P. P., Kaiser, W. J., Karin, M., Kaufmann, T., Kepp, O., Kimchi, A., Kitsis, R. N., Klionsky, D. J., Knight, R. A., Kumar, S., Lee, S. W., Lemasters, J. J., Levine, B., Linkermann, A., Lipton, S. A., Lockshin, R. A., Lopez-Otin, C., Lowe, S. W., Luedde, T., Lugli, E., MacFarlane, M., Madeo, F., Malewicz, M., Malorni, W., Manic, G., Marine, J. C., Martin, S. J., Martinou, J. C., Medema, J. P., Mehlen, P., Meier, P., Melino, S., Miao, E. A., Molkentin, J. D., Moll, U. M., Munoz-Pinedo, C., Nagata, S., Nunez, G., Oberst, A., Oren, M., Overholtzer, M., Pagano, M., Panaretakis, T., Pasparakis, M., Penninger, J. M., Pereira, D. M., Pervaiz, S., Peter, M. E., Piacentini, M., Pinton, P., Prehn, J. H. M., Puthalakath, H., Rabinovich, G. A., Rehm, M., Rizzuto, R., Rodrigues, C. M. P., Rubinsztein, D. C., Rudel, T., Ryan, K. M., Sayan, E., Scorrano, L., Shao, F., Shi, Y. F., Silke, J., Simon, H. U., Sistigu, A., Stockwell, B. R., Strasser, A., Szabadkai, G., Tait, S. W. G., Tang, D. L., Tavernarakis, N., Thorburn, A., Tsujimoto, Y., Turk, B., Vanden Berghe, T., Vandenabeele, P., Heiden, M. G. V., Villunger, A., Virgin, H. W., Vousden, K. H., Vucic, D., Wagner, E. F., Walczak, H., Wallach, D., Wang, Y., Wells, J. A., Wood, W., Yuan, J. Y., Zakeri, Z., Zhivotovsky, B., Zitvogel, L., Melino, G. and Kroemer, G. (2018) Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 25, 486-541. https://doi.org/10.1038/s41418-017-0012-4
  14. Goldar, S., Khaniani, M. S., Derakhshan, S. M. and Baradaran, B. (2015) Molecular mechanisms of apoptosis and roles in cancer development and treatment. Asian Pac. J. Cancer Prev. 16, 2129-2144. https://doi.org/10.7314/APJCP.2015.16.6.2129
  15. Huang, Y., Wu, B., Shen, D., Chen, J., Yu, Z. and Chen, C. (2021) Ferroptosis in a sarcopenia model of senescence accelerated mouse prone 8 (SAMP8). Int. J. Biol. Sci. 17, 151-162. https://doi.org/10.7150/ijbs.53126
  16. Hudis, C. A. (2007) Trastuzumab-mechanism of action and use in clinical practice. N. Engl. J. Med. 357, 39-51. https://doi.org/10.1056/NEJMra043186
  17. Ishii, Y., Pirkmaier, A., Alvarez, J. V., Frank, D. A., Keselman, I., Logothetis, D., Mandeli, J., O'Connell, M. J., Waxman, S. and Germain, D. (2006) Cyclin D1 overexpression and response to bortezomib treatment in a breast cancer model. J. Natl. Cancer Inst. 98, 1238-1247. https://doi.org/10.1093/jnci/djj334
  18. Kikuchi, G., Yoshida, T. and Noguchi, M. (2005) Heme oxygenase and heme degradation. Biochem. Biophys. Res. Commun. 338, 558-567. https://doi.org/10.1016/j.bbrc.2005.08.020
  19. Kim, J. H., Kim, J. H., Yu, Y. S., Jun, H. O., Kwon, H. J., Park, K. H. and Kim, K. W. (2008) Inhibition of choroidal neovascularization by homoisoflavanone, a new angiogenesis inhibitor. Mol. Vis. 14, 556-561.
  20. Kranenburg, O., van der Eb, A. J. and Zantema, A. (1996) Cyclin D1 is an essential mediator of apoptotic neuronal cell death. EMBO J. 15, 46-54. https://doi.org/10.1002/j.1460-2075.1996.tb00332.x
  21. Kumar, S. and Bandyopadhyay, U. (2005) Free heme toxicity and its detoxification systems in human. Toxicol. Lett. 157, 175-188. https://doi.org/10.1016/j.toxlet.2005.03.004
  22. Lee, B., Basavarajappa, H. D., Sulaiman, R. S., Fei, X., Seo, S. Y. and Corson, T. W. (2014) The first synthesis of the antiangiogenic homoisoflavanone, cremastranone. Org. Biomol. Chem. 12, 7673-7677. https://doi.org/10.1039/C4OB01604A
  23. Lin, L. G., Liu, Q. Y. and Ye, Y. (2014) Naturally occurring homoisoflavonoids and their pharmacological activities. Planta Med. 80, 1053-1066. https://doi.org/10.1055/s-0034-1383026
  24. Luu Hoang, K. N., Anstee, J. E. and Arnold, J. N. (2021) The diverse roles of heme oxygenase-1 in tumor progression. Front. Immunol. 12, 658315.
  25. Matthews, H. K., Bertoli, C. and de Bruin, R. A. M. (2022) Cell cycle control in cancer. Nat. Rev. Mol. Cell Biol. 23, 74-88. https://doi.org/10.1038/s41580-021-00404-3
  26. Motokura, T. and Arnold, A. (1993) Cyclin D and oncogenesis. Curr. Opin. Genet. Dev. 3, 5-10. https://doi.org/10.1016/S0959-437X(05)80334-X
  27. Nguyen, A. T., Fontaine, J., Malonne, H. and Duez, P. (2006) Homoisoflavanones from Disporopsis aspera. Phytochemistry 67, 2159-2163. https://doi.org/10.1016/j.phytochem.2006.06.021
  28. Ouyang, L., Shi, Z., Zhao, S., Wang, F. T., Zhou, T. T., Liu, B. and Bao, J. K. (2012) Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif. 45, 487-498. https://doi.org/10.1111/j.1365-2184.2012.00845.x
  29. Perou, C. M., Sorlie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., Rees, C. A., Pollack, J. R., Ross, D. T., Johnsen, H., Akslen, L. A., Fluge, O., Pergamenschikov, A., Williams, C., Zhu, S. X., Lonning, P. E., Borresen-Dale, A. L., Brown, P. O. and Botstein, D. (2000) Molecular portraits of human breast tumours. Nature 406, 747-752. https://doi.org/10.1038/35021093
  30. Pfeffer, C. M. and Singh, A. T. K. (2018) Apoptosis: a target for anticancer therapy. Int. J. Mol. Sci. 19, 448.
  31. Pirkmaier, A., Yuen, K., Hendley, J., O'Connell, M. J. and Germain, D. (2003) Cyclin D1 overexpression sensitizes breast cancer cells to fenretinide. Clin. Cancer Res. 9, 1877-1884.
  32. Ponka, P. (1997) Tissue-specific regulation of iron metabolism and heme synthesis: distinct control mechanisms in erythroid cells. Blood 89, 1-25. https://doi.org/10.1182/blood.V89.1.1
  33. Rashed, A. N., Afifi, F. U. and Disi, A. M. (2003) Simple evaluation of the wound healing activity of a crude extract of Portulaca oleracea L. (growing in Jordan) in Mus musculus JVI-1. J. Ethnopharmacol. 88, 131-136. https://doi.org/10.1016/S0378-8741(03)00194-6
  34. Rossi, V., Berchialla, P., Giannarelli, D., Nistico, C., Ferretti, G., Gasparro, S., Russillo, M., Catania, G., Vigna, L., Mancusi, R. L., Bria, E., Montemurro, F., Cognetti, F. and Fabi, A. (2019) Should all patients with HR-positive HER2-negative metastatic breast cancer receive CDK 4/6 inhibitor as first-line based therapy? A network meta-analysis of data from the PALOMA 2, MONALEESA 2, MONALEESA 7, MONARCH 3, FALCON, SWOG and FACT trials. Cancers (Basel) 11, 1661.
  35. Shim, J. S., Kim, J. H., Lee, J., Kim, S. N. and Kwon, H. J. (2004) Anti-angiogenic activity of a homoisoflavanone from Cremastra appendiculata. Planta Med. 70, 171-173. https://doi.org/10.1055/s-2004-815496
  36. Shin, H. E., Lee, S., Choi, Y., Park, S., Kwon, S., Choi, J. K., Seo, S. Y. and Lee, Y. (2022) Synthetic homoisoflavane derivatives of cremastranone suppress growth of colorectal cancer cells through cell cycle arrest and induction of apoptosis. Biomol. Ther. (Seoul) 30, 576-584. https://doi.org/10.4062/biomolther.2022.090
  37. Slamon, D., Eiermann, W., Robert, N., Pienkowski, T., Martin, M., Press, M., Mackey, J., Glaspy, J., Chan, A., Pawlicki, M., Pinter, T., Valero, V., Liu, M. C., Sauter, G., von Minckwitz, G., Visco, F., Bee, V., Buyse, M., Bendahmane, B., Tabah-Fisch, I., Lindsay, M. A., Riva, A. and Crown, J.; Breast Cancer International Research Group (2011) Adjuvant trastuzumab in HER2-positive breast cancer. N. Engl. J. Med. 365, 1273-1283. https://doi.org/10.1056/NEJMoa0910383
  38. Sui, X., Zhang, R., Liu, S., Duan, T., Zhai, L., Zhang, M., Han, X., Xiang, Y., Huang, X., Lin, H. and Xie, T. (2018) RSL3 drives ferroptosis through GPX4 inactivation and ROS production in colorectal cancer. Front. Pharmacol. 9, 1371.
  39. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A. and Bray, F. (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209-249. https://doi.org/10.3322/caac.21660
  40. Van Cruchten, S. and Van Den Broeck, W. (2002) Morphological and biochemical aspects of apoptosis, oncosis and necrosis. Anat. Histol. Embryol. 31, 214-223. https://doi.org/10.1046/j.1439-0264.2002.00398.x
  41. Vermeulen, K., Van Bockstaele, D. R. and Berneman, Z. N. (2003) The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. 36, 131-149. https://doi.org/10.1046/j.1365-2184.2003.00266.x
  42. Waks, A. G. and Winer, E. P. (2019) Breast cancer treatment: a review. JAMA 321, 288-300. https://doi.org/10.1001/jama.2018.19323
  43. Wang, T., Ashrafi, A., Modareszadeh, P., Deese, A. R., Chacon Castro, M. D. C., Alemi, P. S. and Zhang, L. (2021) An analysis of the multifaceted roles of heme in the pathogenesis of cancer and related diseases. Cancers (Basel) 13, 4142.
  44. Xu, X., Wang, H., Li, H. and Sun, H. (2022) Dynamic and temporal transcriptomic analysis reveals ferroptosis-mediated antileukemia activity of S-dimethylarsino-glutathione: insights into novel therapeutic strategy. CCS Chem. 4, 963-974. https://doi.org/10.31635/ccschem.021.202000685
  45. Yan, J., Sun, L. R., Zhou, Z. Y., Chen, Y. C., Zhang, W. M., Dai, H. F. and Tan, J. W. (2012) Homoisoflavonoids from the medicinal plant Portulaca oleracea. Phytochemistry 80, 37-41. https://doi.org/10.1016/j.phytochem.2012.05.014
  46. Yu, Y., Yan, Y., Niu, F., Wang, Y., Chen, X., Su, G., Liu, Y., Zhao, X., Qian, L., Liu, P. and Xiong, Y. (2021) Ferroptosis: a cell death connecting oxidative stress, inflammation and cardiovascular diseases. Cell Death Discov. 7, 193.
  47. Zhang, C., Liu, X., Jin, S., Chen, Y. and Guo, R. (2022) Ferroptosis in cancer therapy: a novel approach to reversing drug resistance. Mol. Cancer 21, 47.
  48. Zhou, C. X., Zou, L., Mo, J. X., Wang, X. Y., Yang, B., He, Q. J. and Gan, L. S. (2013) Homoisoflavonoids from Ophiopogon japonicus. Helv. Chim. Acta 96, 1397-1405. https://doi.org/10.1002/hlca.201200493
  49. Zhou, X. L., Zhang, Y. P., Zhao, H. D., Liang, J. S., Zhang, Y. and Shi, S. Y. (2015) Antioxidant homoisoflavonoids from Polygonatum odoratum. Food Chem. 186, 63-68. https://doi.org/10.1016/j.foodchem.2015.02.058