DOI QR코드

DOI QR Code

액체수소 저장 탱크의 중력 방향 및 수소 충전율이 BOG에 미치는 영향에 관한 수치적 연구

Numerical Study on the Effects of Gravity Direction and Hydrogen Filling Rate on BOG in the Liquefied Hydrogen Storage Tank

  • 서영민 (한국전기연구원 전기모빌리티연구단 수소전기연구팀) ;
  • 노현우 (한국전기연구원 전기모빌리티연구단 수소전기연구팀) ;
  • 하동우 (한국전기연구원 전기모빌리티연구단 수소전기연구팀) ;
  • 구태형 (한국전기연구원 전기모빌리티연구단 수소전기연구팀) ;
  • 고락길 (한국전기연구원 전기모빌리티연구단 수소전기연구팀)
  • YOUNG MIN SEO (Hydrogen Electric Research Team, Electric Mobility Research Division, Korea Electrotechnology Research Institute) ;
  • HYUN WOO NOH (Hydrogen Electric Research Team, Electric Mobility Research Division, Korea Electrotechnology Research Institute) ;
  • DONG WOO HA (Hydrogen Electric Research Team, Electric Mobility Research Division, Korea Electrotechnology Research Institute) ;
  • TAE HYUNG KOO (Hydrogen Electric Research Team, Electric Mobility Research Division, Korea Electrotechnology Research Institute) ;
  • ROCK KIL KO (Hydrogen Electric Research Team, Electric Mobility Research Division, Korea Electrotechnology Research Institute)
  • 투고 : 2023.07.07
  • 심사 : 2023.08.07
  • 발행 : 2023.08.30

초록

In this study, a numerical simulations were conducted to analyze the phase change behavior of a liquid hydrogen storage container. The effects of gravity direction and hydrogen filling rate on boil-off gas (BOG) in the storage container were investigated. The study employed the volume of fluid, which is the phase change analysis model provided by ANSYS Fluent (ANSYS, Canonsburg, PA, USA), to investigate the sloshing phenomenon inside the liquefied hydrogen fuel tank. Considering the transient analysis time, two-dimensional simulation were carried out to examine the characteristics of the flow and thermal fields. The results indicated that the thermal flow characteristics and BOG phenomena inside the two-dimensional liquefied hydrogen storage container were significantly influenced by changes in gravity direction and hydrogen filling rate.

키워드

과제정보

이 논문은 2023년도 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의 지원을 받아 수행된 연구임(23A02081, 액체수소 운송을 위한 3,000 kg 용량 탱크 트레일러 개발 및 실증). 이 연구는 2023년도 정부(과학기술정보통신부)의 재원으로 국가과학기술연구회의 지원을 받아 수행된 한국전기연구원 기본 사업임(No. 23A01043).

참고문헌

  1. L. Zhao, Q. Zhao, J. Zhang, S. Zhang, G. He, M. Zhang, T. Su, X. Liang, C. Huang, and W. Yan, "Review on studies of the emptying process of compressed hydrogen tanks", International Journal of Hydrogen Energy, Vol. 46, No. 43, 2021, pp. 22554-22573, doi: https://doi.org/10.1016/j.ijhydene.2021.04.101.
  2. M. He, C. Lv, L. Gong, J. Wu, W. Zhu, Y. Zhang, M. Zhang, W. Sun, and L. Sha, "The design and optimization of a cryogenic compressed hydrogen refueling process", International Journal of Hydrogen Energy, Vol. 46, No. 57, 2021, pp. 29391-29399, doi: https://doi.org/10.1016/j.ijhydene.2020.11.061.
  3. F. Liu, Z. Sun, H. Bian, M. Ding, and X. Meng, "Identification and classification of the flow pattern of hydrogen-air-steam mixture gas under steam condensation", International Journal of Thermal Sciences, Vol. 183, 2023, pp. 107854, doi: https://doi.org/10.1016/j.ijthermalsci.2022.107854.
  4. J. Liu, S. Zheng, Z. Zhang, J. Zheng, and Y. Zhao, "Numerical study on the fast filling of on-bus gaseous hydrogen storage cylinder", International Journal of Hydrogen Energy, Vol. 45, No. 15, 2020, pp. 9241-9251, doi: https://doi.org/10.1016/j.ijhydene.2020.01.033.
  5. S. J. Oh, J. H. Yoon, K. S. Jeon, and J. Choi "A numerical study on characteristics of heat transfer in hydrogen filling storage vessel by charging conditions", International Journal of Hydrogen Energy, Vol. 47, No. 61, 2022, pp. 25679-25695, doi: https://doi.org/10.1016/j.ijhydene.2022.05.306.
  6. F. Ustolin, G. E. Scarponi, T. Iannaccone, V. Cozzani, and N. Paltrinieri, "Cryogenic hydrogen storage tanks exposed to fires: a CFD study", Chemical Engineering Transactions, Vol. 90, 2022, pp. 535-540, doi: https://doi.org/10.3303/CET2290090.
  7. S. J. Oh, J. H. Yoon, K. S. Jeon, J. K. Kim, J. H. Park, and J. Choi, "A study on the characteristics of temperature distribution related to geometry of tube in hydrogen storage vessel", Journal of Hydrogen and New Energy, Vol. 32, No. 4, 2021, pp. 205-211, doi: https://doi.org/10.7316/KHNES.2021.32.4.205.
  8. P. Wang, L. Ji, J. Yuan, Z. An, K. Yan, and J. Zhang, "The influence of inner material with different average thermal conductivity on the performance of whole insulation system for liquid hydrogen on orbit storage", International Journal of Hydrogen Energy, Vol. 46, No. 18, 2021, pp. 101931-10923, doi: https://doi.org/10.1016/j.ijhydene.2020.12.166.
  9. S. Z. S. Al Ghafri, A. Swanger, V. Jusko, A. Siahvashi, F. Perez, M. L. Johns, and E. F. May, "Modelling of liquid hydrogen boil-off", Energies, Vol. 15, No. 3, 2022, pp. 1149, doi: https://doi.org/10.3390/en15031149.
  10. Z. Liu, H. Pan, Y. Liu, and Y. Li, "Thermodynamic performance on the pressurized discharge process from a cryogenic fuel storage tank", International Journal of Hydrogen Energy, Vol. 47, No. 24, 2022, pp. 12107-12118, doi: https://doi.org/10.1016/j.ijhydene.2022.01.237.
  11. H. Jung, D. Han, W. Yang, and Y. Baek, "A simulation study on the hydrogen liquefaction through compact GM refrigerator", Hydrogen and New Energy, Vol. 33, No. 5, 2022, pp. 534-540, doi: https://doi.org/10.7316/KHNES.2022.33.5.534.
  12. S. J. Oh, J. Y. Kwon, and J. H. Yoon, "A Study on the effect of evaporation of liquid hydrogen tank related to horizontal sinewave", Hydrogen and New Energy, Vol. 34, No. 2, 2023, pp. 155-161, doi: https://doi.org/10.7316/JHNE.2023.34.2.155.
  13. Z. Liu, Y. Feng, G. Lei, and Y. Li, "Fluid thermal stratification in a non-isothermal liquid hydrogen tank under sloshing excitation", International Journal of Hydrogen Energy, Vol. 43, No. 50, 2018, pp. 22622-22635, doi: https://doi.org/10.1016/j.ijhydene.2018.10.113.
  14. Z. Liu, Y. Feng, G. Lei, and Y. Li, "Fluid sloshing dynamic performance in a liquid hydrogen tank", International Journal of Hydrogen Energy, Vol. 44, No. 26, 2019, pp. 13885-13894, doi: https://doi.org/10.1016/j.ijhydene.2019.04.014.
  15. C. Wan, S. Zhu, C. Shi, S. Bao, X. Zhi, L. Qiu, and K. Wang, "Numerical simulation on pressure evolution process of liquid hydrogen storage tank with active cryogenic cooling", International Journal of Refrigeration 2023 (epub ahead of print), doi: https://doi.org/10.1016/j.ijrefrig.2023.01.012.
  16. Y. Jiang, Y. Yu, Z. Wang, S. Zhang, and J. Cao, "CFD simulation of heat transfer and phase change characteristics of the cryogenic liquid hydrogen tank under microgravity conditions", International Journal of Hydrogen Energy, Vol. 48, No. 19, 2023, pp. 7026-7037, doi: https://doi.org/10.1016/j.ijhydene.2022.04.006.
  17. G. Wei and J. Zhang, "Numerical study of the filling process of a liquid hydrogen storage tank under different sloshing conditions", Processes, Vol. 8, No. 9, 2020, pp. 1020, doi: https://doi.org/10.3390/pr8091020.
  18. D. Kang, S. Yun, B. Kim, J. Kim, G. Kim, H. Lee, and S. Choi, "Numerical investigation of the initial charging process of the liquid hydrogen tank for vehicles", Energies, Vol. 16, No. 1, 2023, pp. 38, doi: https://doi.org/10.3390/en16010038.
  19. J. H. Lee, S. Y. Hwang, S. J. Lee, and J. H. Lee, "Numerical study of heat flux and BOG in C-type liquefied hydrogen tank under sloshing excitation at the saturated state", Journal of Computational Structural Engineering Institute of Korea, Vol. 35, No. 5, 2022, pp. 299-308, doi: https://doi.org/10.7734/COSEIK.2022.35.5.299.
  20. G. M. Jeon, J. C. Park, and S. Choi, "Multiphase-thermal simulation on BOG/BOR estimation due to phase change in cryogenic liquid storage tanks", Applied Thermal Engineering, Vol. 184, 2021, pp. 116264, doi: https://doi.org/10.1016/j.applthermaleng.2020.116264.
  21. E. L. Grotle and V. Æsoy, "Dynamic modelling of the thermal response enhanced by sloshing in marine LNG fuel tanks", Applied Thermal Engineering, Vol. 135, 2018, pp. 512-520, doi: https://doi.org/10.1016/j.applthermaleng.2018.02.086.