DOI QR코드

DOI QR Code

Studies on Multi-step Addition of NMP in (LiNi0.80Co0.15Al0.05) (NCA) Cathode Slurry Preparation and its Rheological, Mechanical Strength and Electrochemical Properties for Li-ion Cells

  • Received : 2023.02.16
  • Accepted : 2023.03.27
  • Published : 2023.08.31

Abstract

For electrode stability and the electrochemical performance of the Li-ion cell, it is essential that the active ingredients and unique additives in the polymer binder be well dispersed with the solvent-based slurry. The efficient procedure used to create the slurry affects the rheological characteristics of the electrode slurry. When successively adding different steps of Nmethyl-2-pyrrolidone (NMP) solvent to the cathode composition, it is evenly disseminated. The electrochemical performance of the Li-ion cells and the electrodes made with slurry formed by single step and multiple steps of addition of NMP solvent are examined. To preform rheological properties of cathode electrode slurry on Ni-rich Lithium Nickel-Cobalt-Aluminum Oxide (LiNi0.80Co0.15Al0.05) (NCA). Also, we investigate different step addition of electrode formation and mechanical strength characterization like peel strength. According to the EIS study, a multi-step electrode slurry has lower internal resistance than a single-step electrode slurry, which results in better electrical characteristics and efficiency. Further, microstructure of electrodes is obtained electrochemical performance in the 18650 cylindrical cells with targeted capacity of 1.5 Ah. The slurry of electrodes prepared by single step and multiple steps of addition of NMP solvent and its effect on the fabrication of 1.5 Ah cells. A three-step solvent addition on slurry has been found to be a lower internal resistance than a single-step electrode slurry as confirmed by the EIS analysis, yielding improved electrical properties and efficiency.

Keywords

Acknowledgement

Authors wish to thank Amara Raja Management for their encouragement. Authors are grateful to Mr. Jagadish M, Mr. Niranjan C, Mr. Narayan R and Dr. Ebenezer D, for their valuable suggestions and constructive remarks on the manuscript for better quality of the text. One of the Author Dr. Venkateswarlu Manne is grateful to the IGSTC for the award of SELBA [IGSTC/call/2017/SELBA/amararaja/22C/2018-19/55] project on solid state batteries for EVs.

References

  1. M. S. E. Housche, C.-H. Yim, Z. Karkar, and Y. AbuLebdeh, Batteries, 2022, 8(7), 70.
  2. J. Kersey, N. D. Popovich, and A. A. Phadke, Nat. Energy, 2022, 7, 664-674. https://doi.org/10.1038/s41560-022-01065-y
  3. Y. Koshtyal, D. Olkhovskii, A. Rumyantsev, and M. Maximov, Batteries, 2022, 8(10), 184.
  4. W. Bauer and D. Notzel, Ceram. Int., 2014, 40(3), 4591-4598. https://doi.org/10.1016/j.ceramint.2013.08.137
  5. W. B. Hawley and J. Li, J. Energy Storage, 2019, 25, 100862.
  6. R. Zhang, B. Xia, B. Li, Y. Lai, W. Zheng, H. Wang, W. Wang, and M. Wang, Energies, 2018, 11(9), 2275.
  7. G. Zheng, W. Zhang, and X. Huang, ChemistrySelect, 2018, 3(41), 11573-11578. https://doi.org/10.1002/slct.201802556
  8. J. Janek and W. G. Zeier, Nat. Energy, 2016, 1, 16141.
  9. S.-T. Myung, F. Maglia, K.-J. Park, C. S. Yoon, P. Lamp, S.-J. Kim, and Y.-K. Sun, ACS Energy Lett., 2017, 2(1), 196-223. https://doi.org/10.1021/acsenergylett.6b00594
  10. Y. Liu, R. Zhang, J. Wang, and Y. Wang, iScience, 2021, 24(4), 102332.
  11. R. Sliz, J. Valikangas, H. S. Santos, P. Vilmi, L. Rieppo, T. Hu, U. Lassi, and T. Fabritius, ACS Appl. Energy Mater., 2022, 5(4), 4047-4058. https://doi.org/10.1021/acsaem.1c02923
  12. W. Zhang, X. He, W. Pu, J. Li, and C. Wan, Ionics, 2011, 17, 473-477. https://doi.org/10.1007/s11581-011-0560-4
  13. K. M. Kim, W. S. Jeon, I. J. Chung, and S. H. Chang, J. Power Sources, 1999, 83(1-2), 108-113. https://doi.org/10.1016/S0378-7753(99)00281-5
  14. G.-W. Lee, J. H. Ryu, W. Han, K. H. Ahn, and S. M. Oh, J. Power Sources, 2010, 195(18), 6049-6054. https://doi.org/10.1016/j.jpowsour.2009.12.101
  15. M. Ueno, N. Imanishi, K. Hanai, T. Kobayashi, A. Hirano, O. Yamamoto, and Y. Takeda, J. Power Sources, 2011, 196(10), 4756-4761. https://doi.org/10.1016/j.jpowsour.2011.01.054
  16. X. Li, K. Qian, Y.-B. He, C. Liu, D. An, Y. Li, D. Zhou, Z. Lin, B. Li, Q.-H. Yang, and F. Kang, J. Mater. Chem. A, 2017, 5, 18888-18895. https://doi.org/10.1039/C7TA04415A
  17. H. Zhang, J. Zhang, J. Ma, G. Xu, T. Dong, and G. Cui, Electrochem. Energ. Rev., 2019, 2, 128-148. https://doi.org/10.1007/s41918-018-00027-x
  18. J. Li, J. Fleetwood, W. B. Hawley, and W. Kays, Chem. Rev., 2022, 122(1), 903-956. https://doi.org/10.1021/acs.chemrev.1c00565
  19. C. F. Oladimeji, P. L. Moss, and M. H. Weatherspoon, Adv. Chem., 2016, 2016, 7395060.
  20. C. D. Reynolds, S. D. Hare, P. R. Slater, M. J. H. Simmons, and E. Kendrick, Energy Technol., 2022, 10(10), 2200545.
  21. A. Purwanto, C. S. Yudha, U. Ubaidillah, H. Widiyandari, T. Ogi, and H. Haerudin, Mater. Res. Express, 2018, 5, 122001.
  22. W. B. Hawley, H. M. Meyer, and J. Li, Electrochim. Acta, 2021, 380, 138203.
  23. Y. Hirata and T. Ozaki, Mater. Lett., 1992, 15(1-2), 31-34. https://doi.org/10.1016/0167-577X(92)90007-7
  24. A. M. Gaikwad and A. C. Arias, ACS Appl. Mater. Interfaces, 2017, 9(7), 6390-6400. https://doi.org/10.1021/acsami.6b14719