DOI QR코드

DOI QR Code

Structural and component characterization of the B4C neutron conversion layer deposited by magnetron sputtering

  • Jingtao Zhu (Key Laboratory of Advanced Micro-structured Materials, Ministry of Education, School of Physical and Engineering, Tongji University) ;
  • Yang Liu (Key Laboratory of Advanced Micro-structured Materials, Ministry of Education, School of Physical and Engineering, Tongji University) ;
  • Jianrong Zhou (Spallation Neutron Source Science Center) ;
  • Zehua Yang (State Key Laboratory of Surface Physics, Department of Physics, Fudan University) ;
  • Hangyu Zhu (Key Laboratory of Advanced Micro-structured Materials, Ministry of Education, School of Physical and Engineering, Tongji University) ;
  • Xiaojuan Zhou (Spallation Neutron Source Science Center) ;
  • Jinhao Tan (Spallation Neutron Source Science Center) ;
  • Mingqi Cui (State Key Laboratory of Particle Detection and Electronics, Institute of High Energy Physics, Chinese Academy of Sciences) ;
  • Zhijia Sun (Spallation Neutron Source Science Center)
  • Received : 2023.03.22
  • Accepted : 2023.05.09
  • Published : 2023.09.25

Abstract

Neutron conversion detectors that use 10B-enriched boron carbide are feasible alternatives to 3He-based detectors. We prepared boron carbide films at micron-scale thickness using direct-current magnetron sputtering. The structural characteristics of natural B4C films, including density, roughness, crystallization, and purity, were analyzed using grazing incidence X-ray reflectivity, X-ray diffraction, X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, and scanning electron microscopy. A beam profile test was conducted to verify the practicality of the 10B-enriched B4C neutron conversion layer. A clear profile indicated the high quality of the neutron conversion of the boron carbide layer.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grant Nos. U1932167, 12175254, 11875204, 12227810, U2032166, 11975255), and Fundamental Research Funds for the Central Universities (22120210446 and 22120180070).

References

  1. Z. Zhang, Y. Liang, W. Li, Z. Wang, H. Chen, Stress evolution in B4C and Cr mono-layer and B4C/Cr multilayer films with variable layer thickness for neutron detectors, Thin Solid Films 531 (2013) 302-305, https://doi.org/10.1016/j.tsf.2013.01.084.
  2. J.L. Lacy, A. Athanasiades, L. Sun, C.S. Martin, T.D. Lyons, M.A. Foss, H.B. Haygood, Boron-coated straws as a replacement for 3He-based neutron detectors, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 652 (2011) 359-363, https://doi.org/10.1016/j.nima.2010.09.011.
  3. A. Cho, Helium-3 shortage could put freeze on low-temperature Research, Science 326 (2009) 778-779, https://doi.org/10.1126/science.326_778.
  4. K. Zeitelhack, Search for alternative techniques to helium-3 based detectors for neutron scattering applications, Neutron News 23 (2012) 10-13, https://doi.org/10.1080/10448632.2012.725325.
  5. F. Piscitelli, A. Khaplanov, A. Devishvili, S. Schmidt, C. Hoglund, J. Birch, A.J.C. Dennison, P. Gutfreund, R. Hall-Wilton, P. Van Esch, Neutron reflectometry on highly absorbing films and its application to (B4C)-B-10-based neutron detectors, Proc. R. Soc. A-Math. Phys. Eng. Sci. 472 (2016), https://doi.org/10.1098/rspa.2015.0711.
  6. M. Henske, M. Klein, M. Kohli, P. Lennert, G. Modzel, C.J. Schmidt, U. Schmidt, The 10B based Jalousie neutron detector - an alternative for 3He filled position sensitive counter tubes, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 686 (2012) 151-155, https://doi.org/10.1016/j.nima.2012.05.075.
  7. N. Hong, An Exploration of Neutron Detection in Semiconducting Boron Carbide, The University of Nebraska, Lincoln, 2012.
  8. C. Hoglund, J. Birch, K. Andersen, T. Bigault, J.-C. Buffet, J. Correa, P. van Esch, B. Guerard, R. Hall-Wilton, J. Jensen, A. Khaplanov, F. Piscitelli, C. Vettier, W. Vollenberg, L. Hultman, B4C thin films for neutron detection, J. Appl. Phys. 111 (2012), https://doi.org/10.1063/1.4718573.
  9. S. Schmidt, C. Hoglund, J. Jensen, L. Hultman, J. Birch, R. Hall-Wilton, Low-temperature growth of boron carbide coatings by direct current magnetron sputtering and high-power impulse magnetron sputtering, J. Mater. Sci. 51 (2016) 10418-10428, https://doi.org/10.1007/s10853-016-0262-4.
  10. H. Pedersen, C. Hoglund, J. Birch, J. Jensen, A. Henry, Low temperature CVD of thin, amorphous boron-carbon films for neutron detectors, Chem. Vap. Depos. 18 (2012) 221-224, https://doi.org/10.1002/cvde.201206980.
  11. G. Nowak, M. Stormer, H.W. Becker, C. Horstmann, R. Kampmann, D. Hoche, M. Haese-Seiller, J.F. Moulin, M. Pomm, C. Randau, U. Lorenz, R. Hall-Wilton, M. Muller, A. Schreyer, Boron carbide coatings for neutron detection probed by x-rays, ions, and neutrons to determine thin film quality, J. Appl. Phys. 117 (2015), https://doi.org/10.1063/1.4905716.
  12. T. Bigault, J. Birch, J.C. Buffet, J. Correa, R. Hall-Wilton, L. Hultman, C. Hoglund, B. Guerard, A. Khaplanov, F. Piscitelli, P. Van Esch, 10B multi-grid proportional gas counters for large area thermal neutron detectors, Neutron News 23 (4) (2012) 20-25, https://doi.org/10.1080/10448632.2012.725329.
  13. I. Stefanescu, Y. Abdullahi, J. Birch, I. Defendi, R. Hall-Wilton, C. Hoglund, L. Hultman, D. Seiler, K. Zeitelhack, Development of a novel macrostructured cathode for large-area neutron detectors based on the 10B-containing solid converter, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 727 (2013) 109-125, https://doi.org/10.1016/j.nima.2013.06.003.
  14. H. Chen, X.L. Wang, China's first pulsed neutron source, Nat. Mater. 15 (2016) 689-691, https://doi.org/10.1038/nmat4655.
  15. L.G. Parratt, Surface studies of solids by total reflection of X-rays, Phys. Rev. 95 (1954) 359-369, https://doi.org/10.1103/PhysRev.95.359.
  16. M.-L. Wu, J.D. Kiely, T. Klemmer, Y.-T. Hsia, K. Howard, Process-property relationship of boron carbide thin films by magnetron sputtering, Thin Solid Films 449 (2004) 120-124, https://doi.org/10.1016/S0040-6090(03)01464-0.
  17. J. Zhou, X. Zhou, J. Zhou, X. Jiang, J. Yang, L. Zhu, W. Yang, T. Yang, H. Xu, Y. Xia, G.-a. Yang, Y. Xie, C. Huang, B. Hu, Z. Sun, Y. Chen, A novel ceramic GEM used for neutron detection, Nucl. Eng. Technol. 52 (2020) 1277-1281, https://doi.org/10.1016/j.net.2019.11.021.