DOI QR코드

DOI QR Code

Tests and numerical behavior of circular concrete-filled double skin steel tubular stub columns under eccentric loads

  • Manigandan R. (Department of Civil Engineering, Saveetha School of Engineering, (SIMATS)) ;
  • Manoj Kumar (Department of Civil Engineering, Birla Institute of Technology and Science)
  • Received : 2022.03.08
  • Accepted : 2023.10.23
  • Published : 2023.11.10

Abstract

This article describes experimental and numerical analyses of eccentrically loaded over the axially loaded circular concrete filled double-skinned steel tubular (CFDST) short columns. Tests on circular CFDST short columns under eccentric and concentric loading were conducted to assess their responses to the frequent intensity of 5-30 mm at the interval of each 5 mm eccentric loading conditions with constant cross-sectional proportions and width-to-thickness ratios of the outside and internal tubes. The non-linear finite-element analysis of circular CFDST short columns of eccentrically loaded over the axially loaded was performed using the ABAQUS to predict the structural behavior and compare the concentric loading capacity over the various eccentric loading conditions. The comparison outcomes show that the axial compressive strength of the circular CDFST short columns was 2.38-32.86%, lesser than the concentrically loaded short column with the inner circular section. Also, the influence of computer simulation employed is more efficient in forecasting the experimentally examined performance of circular CFDST stub columns.

Keywords

Acknowledgement

The authors would like to thank workshop operator Ramesh Das for his technical cooperation in performing the tests.

References

  1. ABAQUS (2014), Analysis User's Manual 6.14-EF, Dassault Systems Simulia Corp., Providence.
  2. Ahmed, M., Liang, Q.Q., Patel, V.I. and Hadi, M.N.S. (2019), "Behavior of eccentrically loaded double circular steel tubular short columns filled with concrete", Eng. Struct., 201, 109790. https://doi.org/10.1016/j.engstruct.2019.109790.
  3. Alqawzai, S., Chen, K., Shen, L., Ding, M., Yang, B. and Elchalakani, M. (2020), "Behavior of octagonal concrete-filled double-skin steel tube stub columns under axial compression", J. Constr. Steel Res., 170, 106115. https://doi.org/10.1016/j.jcsr.2020.106115.
  4. American Concrete Institute (ACI) (2014), Building Code Requirements for Structural Concrete, American Concrete Institute.
  5. Aoki, T., Migita, Y. and Fukumoto, Y. (1991), "Local buckling strength of closed polygon folded section columns", J. Constr. Steel Res., 20(4), 259-270. https://doi.org/10.1016/0143-974X(91)90077-E.
  6. Avci-Karatas, C. (2019), "Prediction of ultimate load capacity of concrete-filled steel tube columns using multivariate adaptive regression splines (MARS)", Steel Compos. Struct., 33(4), 583-594. https://doi.org/10.12989/scs.2019.33.4.583.
  7. Chung, K.S., Kim, J.H. and Yoo, J.H. (2013), "Experimental and analytical investigation of high-strength concrete-filled steel tube square columns subjected to flexural loading", Steel Compos. Struct., 14(2), 133-153. https://doi.org/10.12989/scs.2013.14.2.133.
  8. Dong, C.X. and Ho, J.C.M. (2012), "Concrete-filled double-skin tubular columns with external steel rings", Australian Earthquake Engineering Society 2012 Conference, 1-9.
  9. Dong, C.X., Kwan, A.K.H. and Ho, J.C.M. (2015), "A constitutive model for predicting the lateral strain of confined concrete", Eng. Struct., 1, 155-166. https://doi.org/10.1016/j.engstruct.2015.02.014.
  10. Dong, J., Ma, H., Zou, C., Liu, Y. and Huang, C. (2019), "Finite element analysis and axial bearing capacity of steel reinforced recycled concrete filled square steel tube columns", Struct. Eng. Mech., 72(1), 805-822. https://doi.org/10.12989/sem.2019.72.1.043.
  11. Elchalakani, M., Zhao, X.L. and Grzebieta, R. (2002), "Tests on concrete filled double-skin (CHS outer and SHS inner) composite short columns under axial compression", Thin Wall. Struct., 40(5), 415-441. https://doi.org/10.1016/S0263-8231(02)00009-5.
  12. Eltobgy, H.H. (2013), "Structural design of steel fibre reinforced concrete in-filled steel circular columns", Steel Compos. Struct., 14(3), 267-282. https://doi.org/10.12989/scs.2013.14.3.267.
  13. European Recommendations for Steel Construction (1983), Buckling of Shells ECCS-CECMEKS.
  14. Godat, A., Legeron, F. and Bazonga, D. (2012), "Stability investigation of local buckling behavior of tubular polygon columns under concentric compression", Thin Wall. Struct., 53, 131-140. https://doi.org/10.1016/j.tws.2011.12.013.
  15. Han, L.H., Yao, G.H. and Tao, Z. (2007), "Performance of concrete-filled thin-walled steel tubes under pure torsion", Thin Wall. Struct., 45(1), 24-36. https://doi.org/10.1016/j.tws.2007.01.008.
  16. Han, L.H., Zhao, X.L. and Tao, Z. (2001), "Tests and mechanics model for concrete-filled SHS stub columns, columns and beam-columns", Steel Compos. Struct., 1(1), 51-74. https://doi.org/10.12989/scs.2001.1.1.051.
  17. Hassanein, M.F., Patel, V.I., Elchalakani, M. and Thai, H.T. (2018), "Finite element analysis of large diameter high strength octagonal CFST short columns", Thin Wall. Struct., 123, 467-482. https://doi.org/10.1016/j.istruc.2018.04.006.
  18. Hillerborg, A., Modeer, M. and Petersson, P.E. (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cement Concrete Res., 6(6), 773-781. https://doi.org/10.1016/0008-8846(76)90007-7.
  19. Ho, J.C.M. and Dong, C.X. (2014), "Improving strength, stiffness and ductility of CFDST columns by external confinement", Thin Wall. Struct., 75, 18-29. https://doi.org/10.1016/j.tws.2013.10.009.
  20. Ho, J.C.M. and Lai, M.H. (2013), "Behaviour of uni-axially loaded CFST columns confined by tie bars", J. Constr. Steel Res., 83, 37-50. https://doi.org/10.1016/j.jcsr.2012.12.014.
  21. Ho, J.C.M., Lai, M.H. and Luo, L. (2014), "Uniaxial behaviour of confined high-strength concrete-filled-steel-tube columns", Proc. Inst. Civil Eng.: Struct. Build., 167(9), 520-533. https://doi.org/10.1680/stbu.13.00004.
  22. Ho, J.C.M., Lam, J.Y.K. and Kwan, A.K.H. (2010), "Effectiveness of adding confinement for ductility improvement of high-strength concrete columns", Eng. Struct., 32(3), 714-725. https://doi.org/10.1016/j.engstruct.2009.11.017.
  23. Ho, J.C.M., Ou, X.L., Chen, M.T., Wang, Q. and Lai, M.H. (2020), "A path dependent constitutive model for CFFT column", Eng. Struct., 210, 110367. https://doi.org/10.1016/j.engstruct.2020.110367.
  24. Ho, J.C.M., Ou, X.L., Li, C.W., Song, W., Wang, Q. and Lai, M.H. (2021), "Uni-axial behaviour of expansive CFST and DSCFST stub columns", Eng. Struct., 237, 112193. https://doi.org/10.1016/j.engstruct.2021.112193.
  25. Hu, H.T. and Su, F.C. (2011), "Non-linear analysis of short concrete-filled double skin tube columns subjected to axial compressive forces", Marine Struct., 24(4), 319-337. https://doi.org/10.1016/j.marstruc.2011.05.001.
  26. Hu, H.T., Su, F.C. and Elchalakani, M. (2010), "Finite element analysis of CFT columns subjected to pure bending moment", Steel Compos. Struct., 10(5), 415-428. https://doi.org/10.12989/scs.2010.10.5.415.
  27. Huang, H., Han, L.H., Tao, Z. and Zhao, X.L. (2010), "Analytical behaviour of concrete-filled double skin steel tubular (CFDST) stub columns", J. Constr. Steel Res., 66(4), 542-555. https://doi.org/10.1016/j.jcsr.2009.09.014.
  28. IS 1608 (2005), Metallic Materials-Tensile Testing at Ambient Temperature, Bureau of Indian Standards.
  29. IS 456 (2000), Plain Concrete and Reinforced, Bureau of Indian Standards, New Dehli, 1-114.
  30. Japan Highway Association (1980), Specification for Highway Bridges (Steel Bridge).
  31. Kwan, A.K.H., Dong, C.X. and Ho, J.C.M. (2015), "Axial and lateral stress-strain model for FRP confined concrete", Eng. Struct., , 285-295. https://doi.org/10.1016/j.engstruct.2015.04.046.
  32. Kwan, A.K.H., Dong, C.X. and Ho, J.C.M. (2016), "Axial and lateral stress-strain model for concrete-filled steel tubes", J. Constr. Steel Res., 122, 421-433. https://doi.org/10.1016/j.jcsr.2016.03.031.
  33. Lai, M., Hanzic, L. and Ho, J.C.M. (2019), "Fillers to improve passing ability of concrete", Struct. Concrete, 20(1), 185-197. https://doi.org/10.1002/suco.201800047.
  34. Lai, M.H. and Ho, J.C.M. (2014), "Confinement effect of ring-confined concrete-filled-steel-tube columns under uni-axial load", Eng. Struct., 67, 123-141. https://doi.org/10.1016/j.engstruct.2014.02.013.
  35. Lai, M.H. and Ho, J.C.M. (2014), "Experimental and theoretical studies of confined HSCFST columns under uni-axial compression", Earthq. Struct., 7(4), 527-552. https://doi.org/10.12989/eas.2014.7.4.527.
  36. Lai, M.H. and Ho, J.C.M. (2015a), "Axial strengthening of thin-walled concrete-filled-steel-tube columns by circular steel jackets", Thin Wall. Struct., 7, 11-21. https://doi.org/10.1016/j.tws.2015.09.002.
  37. Lai, M.H. and Ho, J.C.M. (2015b), "Effect of continuous spirals on uni-axial strength and ductility of CFST columns", J. Constr. Steel Res., 104, 235-249. https://doi.org/10.1016/j.jcsr.2014.10.007.
  38. Lai, M.H. and Ho, J.C.M. (2015c), "Optimal design of external rings for confined CFST columns", Mag. Concrete Res., 67(19), 1017-1032. https://doi.org/10.1680/macr.14.00348.
  39. Lai, M.H. and Ho, J.C.M. (2016a), "A theoretical axial stress-strain model for circular concrete-filled-steel-tube columns", Eng. Struct., 125, 124-143. https://doi.org/10.1016/j.engstruct.2016.06.048.
  40. Lai, M.H. and Ho, J.C.M. (2016b), "Confining and hoop stresses in ring-confined thin-walled concrete-filled steel tube columns", Mag. Concrete Res., 68(18), 916-935. https://doi.org/10.1680/jmacr.15.00225.
  41. Lai, M.H. and Ho, J.C.M. (2017), "An analysis-based model for axially loaded circular CFST columns", Thin Wall. Struct., 11 , 770-781. https://doi.org/10.1016/j.tws.2017.07.024.
  42. Lai, M.H., Chen, M.T., Ren, F.M. and Ho, J.C.M. (2019a), "Uniaxial behaviour of externally confined UHSCFST columns", Thin Wall. Struct., 142, 19-36. https://doi.org/10.1016/j.tws.2019.04.047.
  43. Lai, M.H., Liang, Y.W., Wang, Q., Ren, F.M., Chen, M.T. and Ho, J.C.M. (2020b), "A stress-path dependent stress-strain model for FRP-confined concrete", Eng. Struct., 203, 109824. https://doi.org/10.1016/j.engstruct.2019.109824.
  44. Lai, M.H., Song, W., Ou, X.L., Chen, M.T., Wang, Q. and Ho, J.C.M. (2020a), "A path dependent stress-strain model for concrete-filled-steel-tube column", Eng. Struct., 211, 110312. https://doi.org/10.1016/j.engstruct.2020.110312.
  45. Le Hoang, A. and Fehling, E. (2017), "Analysis of circular steel tube confined UHPC stub columns", Steel Compos. Struct., 23(6), 669-682. https://doi.org/10.12989/scs.2017.23.6.669.
  46. Manigandan, R. and Kumar, M. (2020), "Effect of the imperfection on the axial loaded rectangular CFST column", Indian Structural Steel Conference, Singapore, March.
  47. Manigandan, R. and Kumar, M. (2022), "Experimental and numerical behavior of circular concrete-filled double skin steel tubular short columns under eccentric loads", Asian J. Civil Eng., 23(7), 1101-1116, https://doi.org/10.1007/s42107-022-00473-5.
  48. Manigandan, R. and Kumar, M. (2022), "Shape effect on axially loaded CFDST columns", Steel Compos. Struct., 46(6), 735-757. https://doi.org/10.12989/scs.2022.43.6.759.
  49. Manigandan, R., Kumar, M. and Shedge, H.N. (2022), "Investigation on circular and octagonal concrete-filled double skinned steel tubular short columns under axial compression', Steel Compos. Struct., 44(1), 141-154. https://doi.org/10.12989/scs.2022.44.1.141.
  50. Mohammadnejad, M., Naghipour, M., Nematzadeh, M. and Elyasi, M. (2020), "Experimental and analytical investigation of the effect of external pressure on compressive behavior of concrete-filled steel tube stub columns", Appl. Ocean Res., 100, 102152. https://doi.org/10.1016/j.apor.2020.102152.
  51. Pagoulatou, M., Sheehan, T., Dai, X.H. and Lam, D. (2014), "Finite element analysis on the capacity of circular concrete-filled double-skin steel tubular (CFDST) stub columns", Eng. Struct., 72, 102-112. https://doi.org/10.1016/j.engstruct.2014.04.039.
  52. Ronagh, M. (2011), "Plastic hinge length of RC columns subjected to both far-fault and near-fault ground motions having forward directivity", Struct. Des. Tall Spec. Build., 24, 421-439. https://doi.org/10.1002/tal.
  53. Shiming, C. and Huifeng, Z. (2012), "Numerical analysis of the axially loaded concrete filled steel tube columns with debonding separation at the steel-concrete interface", Steel Compos. Struct., 13(3), 277-293. https://doi.org/10.12989/scs.2012.13.3.277.
  54. Uy, B. (2001), "Strength of short concrete filled high strength steel box columns", J. Constr. Steel Res., 57(2), 113-134. https://doi.org/10.1016/S0143-974X(00)00014-6.
  55. Vernardos, S. and Gantes, C. (2019), "Experimental behavior of concrete-filled double-skin steel tubular (CFDST) stub members under axial compression: A comparative review", Struct., 22, 383-404. https://doi.org/10.1016/j.istruc.2019.06.025.
  56. Wang, J., Liu, W., Zhou, D., Zhu, L. and Fang, H. (2014), "Mechanical behaviour of concrete filled double skin steel tubular stub columns confined by FRP under axial compression", Steel Compos. Struct., 17(4), 431-452. https://doi.org/10.12989/scs.2014.17.4.431.
  57. Wardenier, J., Packer, J.A., Zhao, X.L. and Van der Vegte, G.J. (2002). Hollow Sections in Structural Applications, Rotterdam, The Netherlands.
  58. Yang, J., Xu, H. and Peng, G. (2008), "Behavior of concrete-filled double skin steel tubular columns with octagon section under axial compression", Front. Arch. Civil Eng. China, 2(3), 205-210. https://doi.org/10.1007/s11709-008-0035-5.
  59. Yuan, W.B. and Yang, J.J. (2013), "Experimental and numerical studies of short concrete-filled double skin composite tube columns under axially compressive loads", J. Constr. Steel Res., 80, 23-31. https://doi.org/10.1016/j.jcsr.2012.09.014.
  60. Zhao, X.L. and Han, L.H. (2006), "Double skin composite construction", Progr. Struct. Eng. Mater., 8(3), 93-102. https://doi.org/10.1002/pse.216.
  61. Zhao, X.L., Grzebieta, R. and Elchalakani, M. (2002), "Tests of concrete-filled double skin CHS composite stub columns", Steel Compos. Struct., 2(2), 129-146. https://doi.org/10.12989/scs.2002.2.2.129.