DOI QR코드

DOI QR Code

AMESet 기반 20 kW급 수소 연료전지 시스템 동특성 모델 해석

Analysis of Dynamic Characteristics of 20 kW Hydrogen Fuel Cell System Based on AMESet

  • 우종빈 (충남대학교 일반대학원 기계공학과) ;
  • 김영현 (충남대학교 일반대학원 기계공학과) ;
  • 유상석 (충남대학교 기계공학부)
  • JONGBIN WOO (Department of Mechanical Engineering, Chungnam National University Graduate School) ;
  • YOUNGHYEON KIM (Department of Mechanical Engineering, Chungnam National University Graduate School) ;
  • SANGSEOK YU (School of Mechanical Engineering, Chungnam National University)
  • 투고 : 2023.08.09
  • 심사 : 2023.10.12
  • 발행 : 2023.10.30

초록

In proton exchange membrane fuel cell (PEMFC), proper thermal management of the stack and moisture generation by electrochemical reactions significantly affect fuel cell performance. In this study, the PEMFC dynamic characteristic model was developed through Simcenter AMESim, a development program. In addition, the developed model aims to understand the thermal resin balance of the stack and performance characteristics for input loads. The developed model applies the thermal management model of the stack and the moisture content and permeability model to simulate voltage loss and stack thermal behavior precisely. This study extended the C based AMESet (adaptive modeling environment submodeling tool) to simulate electrochemical reactions inside the stack. Fuel cell model of AMESet was liberalized with AMESim and then integrated with the balance of plant (BOP) model and analyzed. And It is intended to be used in component design through BOP analysis. The resistance loss of the stack and thermal behavior characteristics were predicted, and the impact of stack performance and efficiency was evaluated.

키워드

과제정보

이 논문은 2023년도 정부(미래창조과학부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구(No. 2022R1A4A1030333)이며, 산업통상자원부(MOTIE)와 한국에너지기술평가원(KETEP)의 지원을 받아 수행한 연구 과제임(No. 20213030030210).

참고문헌

  1. L. Wang, A. Husar, T. Zhou, and H. Liu "A parametric study of PEM fuel cell performances", International Journal of Hydrogen Energy, Vol. 28, No. 11, 2003, pp. 1263-1272, doi: https://doi.org/10.1016/S0360-3199(02)00284-7.
  2. A. Andronie, I. Stamatin, V. Girleanu, V. Ionescu, and N. Buzbuchi, "Simplified mathematical model for polarization curve validation and experimental performance evaluation of a PEM fuel cell system", Procedia Manufacturing, Vol. 32, 2019, pp. 810-819, doi: https://doi.org/10.1016/j.promfg.2019.02.289.
  3. S. Chugh, C. Chaudhari, K. Sonkar, A. Sharma, G. S. Kapur, and S. S. V. Ramakumar, "Experimental and modelling studies of low temperature PEMFC performance", International Journal of Hydrogen Energy, Vol. 45, No. 15, 2020, pp. 8866-8874, doi: https://doi.org/10.1016/j.ijhydene.2020.01.019.
  4. A. Omran, A. Lucchesi, D. Smith, A. Alaswad, A. Amiri, T. Wilberforce, J. R. Sodre, and A. G. Olabi, "Mathematical model of a proton-exchange membrane (PEM) fuel cell", International Journal of Thermofluids, Vol. 11, 2021, pp. 100110, doi: https://doi.org/10.1016/j.ijft.2021.100110.
  5. A. K. Pinagapani, G. Mani, K. R. Chandran, K. Pandian, E. Sawantmorye, and P. Vaghela, "Dynamic modeling and validation of PEM fuel cell via system identification approach", Journal of Electrical Engineering & Technology, Vol. 16, 2021, pp. 2211-2220, doi: https://doi.org/10.1007/s42835-021-00736-2.
  6. H. Pourrahmani, M. Siavashi, and M. Moghimi, "Design optimization and thermal management of the PEMFC using artificial neural networks", Energy, Vol. 182, 2019, pp. 443-459, doi: https://doi.org/10.1016/j.energy.2019.06.019.
  7. H. Pourrahmani, M. Moghimi, and M. Siavashi, "Thermal management in PEMFCs: the respective effects of porous media in the gas flow channel", International Journal of Hydrogen Energy, Vol. 44, No. 5, 2019, pp. 3121-3137, doi: https://doi.org/10.1016/j.ijhydene.2018.11.222.
  8. F. J. Asensio, J. I. San Martin, I. Zamora, G. Saldana, and O. Onederra, "Analysis of electrochemical and thermal models and modeling techniques for polymer electrolyte membrane fuel cells", Renewable and Sustainable Energy Reviews, Vol. 113, 2019, pp. 109283, doi: https://doi.org/10.1016/j.rser.2019.109283.
  9. Q. Xia, T. Zhang, Z. Sun, and Y. Gao, "Design and optimization of thermal strategy to improve the thermal management of proton exchange membrane fuel cells", Applied Thermal Engineering, Vol. 222, 2023, pp. 119880, doi: https://doi.org/10.1016/j.applthermaleng.2022.119880.
  10. Q. Xia, T. Zhang, Y. Gao, X. C. Ye, and C. Guan, "Optimal design of thermostat for proton exchange membrane fuel cell cooling system", Energy Conversion and Management, Vol. 248, 2021, pp. 114800, doi: https://doi.org/10.1016/j.enconman.2021.114800.
  11. Y. Huang, X. Xiao, H. Kang, J. Lv, R. Zeng, and J. Shen, "Thermal management of polymer electrolyte membrane fuel ells: a critical review of heat transfer mechanisms, cooling approaches, and advanced cooling techniques analysis", Energy Conversion and Management, Vol. 254, 2022, pp. 115221, doi: https://doi.org/10.1016/j.enconman.2022.115221.
  12. T. E. Springer, T. A. Zawodzinski, and S. Gottesfeld, "Polymer electrolyte fuel cell model", Journal of The Electrochemical Society, Vol. 138, No. 8, 1991, pp. 2334-2342, doi: https://doi.org/10.1149/1.2085971.
  13. T. Okada, G. Xie, and M. Meeg, "Simulation for water management in membranes for polymer electrolyte fuel cells", Electrochimica Acta, Vol. 43, No. 14-15, 1998, pp. 2141-21 55, doi: https://doi.org/10.1016/S0013-4686(97)10099-8.
  14. P. C. Sui, X. Zhu, and N. Djilali, "Modeling of PEM fuel cell catalyst layers: status and outlook", Electrochemical Energy Reviews, Vol. 2, 2019, pp. 428-466, doi: https://doi.org/10.1007/s41918-019-00043-5.
  15. C. Lee, Y. Kim, and S. Yu, "Prediction of membrane water content characteristics through dynamic nonlinear model", Journal of Hydrogen and New Energy, Vol. 32, No. 6, 2021, pp. 497-505, doi: https://doi.org/10.7316/KHNES.2021.32.6.497.
  16. L. Xing, H. Chang, R. Zhu, T. Wang, Q. Zou, W. Xiang, and Z. Tu, "Thermal analysis and management of proton exchange membrane fuel cell stacks for automotive vehicle", International Journal of Hydrogen Energy, Vol. 46, No. 64, 2021, pp. 32665-32675, doi: https://doi.org/10.1016/j.ijhydene.2021.07.143.
  17. L. Xing, W. Xiang, R. Zhu, and Z. Tu, "Modeling and thermal management of proton exchange membrane fuel cell for fuel cell/battery hybrid automotive vehicle", International Journal of Hydrogen Energy, Vol. 47, No. 3, 2022, pp. 1888-1900, doi: https://doi.org/10.1016/j.ijhydene.2021.10.146.
  18. J. Woo, Y. Kim, and S. Yu, "Performance of fuel cell system for medium duty truck by cooling system configuration", Journal of Hydrogen and New Energy, Vol. 32, No. 4, 2021, pp. 236-244, doi: https://doi.org/10.7316/KHNES.2021.32.4.236.
  19. H. L. Nguyen, J. Han, H. N. Vu, and S. Yu, "Investigation of multiple degradation mechanisms of a proton exchange membrane fuel cell under dynamic operation", Energies, Vol. 15, No. 24, 2022, pp. 9574, doi: https://doi.org/10.3390/en15249574.
  20. J. Woo, Y. Kim, and S. Yu, "Cooling-system configurations of a dual-stack fuel-cell system for medium-duty trucks", Energies, Vol. 16 No. 5, 2023, pp. 2301, doi: https://doi.org/10.3390/en16052301.
  21. H. L. Nguyen, Y. Kim, J. Park, and S. Yu, "Operating strategy optimization by response surface analysis for durable operation of a heavy-duty fuel cell truck", Energy Conversion and Management, Vol. 291, 2023, pp. 117295, doi: https://doi.org/10.1016/j.enconman.2023.117295.
  22. J. Woo, Y. Kim, and S. Yu, "A study of cooling system control of fuel cell truck", Transactions of the Korean Society of Automotive Engineers, Vol. 30, No. 1, 2022, pp. 9-18, doi: https://doi.org/10.7467/KSAE.2022.30.1.009.
  23. J. Han and S. Yu, "Ram air compensation analysis of fuel cell vehicle cooling system under driving modes", Applied Thermal Engineering, Vol. 142, 2018, pp, 530-542, doi: https://doi.org/10.1016/j.applthermaleng.2018.07.038.
  24. T. L. Kosters, X. Liu, D. Kozulovic, S. Wang, J. Friedrichs, and X. Gao, "Comparison of phase-change-heat-pump cooling and liquid cooling for PEM fuel cells for MW-level aviation propulsion", International Journal of Hydrogen Energy, Vol. 47, No. 68, 2022, pp. 29399-29412, doi:https://doi.org/10.1016/j.ijhydene.2022.06.235.
  25. S. Yu and D. Jung, "A study of operation strategy of cooling module with dynamic fuel cell system model for transportation application", Renewable energy, Vol. 35, No. 11, 2010, pp. 2525-2532, doi: https://doi.org/10.1016/j.renene.2010.03.023.