DOI QR코드

DOI QR Code

Limited in vitro differentiation of porcine induced pluripotent stem cells into endothelial cells

  • In-Won Lee (Department of Animal Bioscience, College of Agriculture & Life Sciences, Gyeongsang National University) ;
  • Hyeon-Geun Lee (Department of Animal Bioscience, College of Agriculture & Life Sciences, Gyeongsang National University) ;
  • Dae-Ky Moon (Department of Animal Bioscience, College of Agriculture & Life Sciences, Gyeongsang National University) ;
  • Yeon-Ji Lee (Department of Animal Bioscience, College of Agriculture & Life Sciences, Gyeongsang National University) ;
  • Bo-Gyeong Seo (Division of Applied Life Science, Gyeongsang National University) ;
  • Sang-Ki Baek (Gyeongsangnamdo Livestock Experiment Station) ;
  • Tae-Suk Kim (Department of Animal Bioscience, College of Agriculture & Life Sciences, Gyeongsang National University) ;
  • Cheol Hwangbo (Division of Life Science, College of Natural Sciences, Gyeongsang National University) ;
  • Joon-Hee Lee (Department of Animal Bioscience, College of Agriculture & Life Sciences, Gyeongsang National University)
  • Received : 2023.07.27
  • Accepted : 2023.08.18
  • Published : 2023.09.30

Abstract

Background: Pluripotent stem cells (PSCs) including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) offer the immense therapeutic potential in stem cell-based therapy of degenerative disorders. However, clinical trials of human ESCs cause heavy ethical concerns. With the derivation of iPSCs established by reprogramming from adult somatic cells through the transgenic expression of transcription factors, this problems would be able to overcome. In the present study, we tried to differentiate porcine iPSCs (piPSCs) into endothelial cells (ECs) for stem cell-based therapy of vascular diseases. Methods: piPSCs (OSKMNL) were induced to differentiation into ECs in four differentiation media (APEL-2, APEL-2 + 50 ng/mL of VEGF, EBM-2, EBM-2 + 50 ng/mL of VEGF) on cultured plates coated with matrigel® (1:40 dilution with DMEM/F-12 medium) for 8 days. Differentiation efficiency of these cells were exanimated using qRT-PCR, Immunocytochemistry, Western blotting and FACS. Results: As results, expressions of pluripotency-associated markers (OCT-3/4, SOX2 and NANOG) were higher observed in all porcine differentiated cells derived from piPSCs (OSKMNL) cultured in four differentiation media than piPSCs as the control, whereas endothelial-associated marker (CD-31) in the differentiated cells was not expressed. Conclusions: It can be seen that piPSCs (OSKMNL) were not suitable to differentiate into ECs in the four differentiation media unlike porcine epiblast stem cells (pEpiSCs). Therefore, it would be required to establish a suitable PSCs for differentiating into ECs for the treatment of cardiovascular diseases.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea funded by the Korean Government (2020R1l1A3072689), Republic of Korea. In-Won Lee, Yeon-Ji Lee and Bo-Gyeong Seo were supported by the scholarship from the BK21Plus Program, Ministry of Education, Republic of Korea.

References

  1. Albelda SM. 1991. Endothelial and epithelial cell adhesion molecules. Am. J. Respir. Cell Mol. Biol. 4:195-203. https://doi.org/10.1165/ajrcmb/4.3.195
  2. Alcalde RE, Terakado N, Otsuki K, Matsumura T. 1997. Angiogenesis and expression of platelet-derived endothelial cell growth factor in oral squamous cell carcinoma. Oncology 54:324-328. https://doi.org/10.1159/000227711
  3. Baek SK, Jeon SB, Seo BG, Hwangbo C, Shin KC, Choi JW, An CS, Jeong MA, Kim TS, Lee JH. 2021. The presence or absence of alkaline phosphatase activity to discriminate pluripotency characteristics in porcine epiblast stem cell-like cells. Cell. Reprogram. 23:221-238. https://doi.org/10.1089/cell.2021.0014
  4. Breier G and Risau W. 1996. The role of vascular endothelial growth factor in blood vessel formation. Trends Cell Biol. 6:454-456. https://doi.org/10.1016/0962-8924(96)84935-X
  5. Cicmil M, Thomas JM, Leduc M, Bon C, Gibbins JM. 2002. Platelet endothelial cell adhesion molecule-1 signaling inhibits the activation of human platelets. Blood 99:137-144. https://doi.org/10.1182/blood.V99.1.137
  6. Coultas L, Chawengsaksophak K, Rossant J. 2005. Endothelial cells and VEGF in vascular development. Nature 438:937-945. https://doi.org/10.1038/nature04479
  7. Duncan GS, Andrew DP, Takimoto H, Kaufman SA, Yoshida H, Spellberg J, de la Pompa JL, Elia A, Wakeham A, Karan-Tamir B, Muller WA, Senaldi G, Zukowski MM, Mak TW. 1999. Genetic evidence for functional redundancy of Platelet/Endothelial cell adhesion molecule-1 (PECAM-1): CD31-deficient mice reveal PECAM-1-dependent and PECAM-1-independent functions. J. Immunol. 162:3022-3030. https://doi.org/10.4049/jimmunol.162.5.3022
  8. Falati S, Patil S, Gross PL, Stapleton M, Merrill-Skoloff G, Barrett NE, Pixton KL, Weiler H, Cooley B, Newman DK, Newman PJ, Furie BC, Furie B, Gibbins JM. 2006. Platelet PECAM-1 inhibits thrombus formation in vivo. Blood 107:535-541. https://doi.org/10.1182/blood-2005-04-1512
  9. Gong T, Heng BC, Xu J, Zhu S, Yuan C, Lo EC, Zhang C. 2017. Decellularized extracellular matrix of human umbilical vein endothelial cells promotes endothelial differentiation of stem cells from exfoliated deciduous teeth. J. Biomed. Mater. Res. A 105:1083-1093. https://doi.org/10.1002/jbm.a.36003
  10. Harding A, Cortez-Toledo E, Magner NL, Beegle JR, Coleal-Bergum DP, Hao D, Wang A, Nolta JA, Zhou P. 2017. Highly efficient differentiation of endothelial cells from pluripotent stem cells requires the MAPK and the PI3K pathways. Stem Cells 35:909-919. https://doi.org/10.1002/stem.2577
  11. Hockemeyer D and Jaenisch R. 2016. Induced pluripotent stem cells meet genome editing. Cell Stem Cell 18:573-586. https://doi.org/10.1016/j.stem.2016.04.013
  12. Jackson DE. 2003. The unfolding tale of PECAM-1. FEBS Lett. 540:7-14. https://doi.org/10.1016/S0014-5793(03)00224-2
  13. Jeon SB, Seo BG, Baek SK, Lee HG, Shin JH, Lee IW, Kim HJ, Moon SY, Shin KC, Choi JW, Kim TS, Lee JH, Hwangbo C. 2021. Endothelial cells differentiated from porcine epiblast stem cells. Cell. Reprogram. 23:89-98. https://doi.org/10.1089/cell.2020.0088
  14. Joddar B, Kumar SA, Kumar A. 2018. A contact-based method for differentiation of human mesenchymal stem cells into an endothelial cell-phenotype. Cell Biochem. Biophys. 76:187-195. https://doi.org/10.1007/s12013-017-0828-z
  15. Kalmar T, Lim C, Hayward P, Munoz-Descalzo S, Nichols J, Garcia-Ojalvo J, Martinez Arias A. 2009. Regulated fluctuations in nanog expression mediate cell fate decisions in embryonic stem cells. PLoS Biol. 7:e1000149.
  16. Klymiuk N, Aigner B, Brem G, Wolf E. 2010. Genetic modification of pigs as organ donors for xenotransplantation. Mol. Reprod. Dev. 77:209-221. https://doi.org/10.1002/mrd.21127
  17. Kobayashi E, Enosawa S, Nagashima H. 2017. Experimental hepatocyte transplantation in pigs. Methods Mol. Biol. 1506:149-160. https://doi.org/10.1007/978-1-4939-6506-9_10
  18. Liang Y, Li J, Lin Q, Huang P, Zhang L, Wu W, Ma Y. 2017. Research progress on signaling pathway-associated oxidative stress in endothelial cells. Oxid. Med. Cell. Longev. 2017:7156941.
  19. Lin N, Li X, Song T, Wang J, Meng K, Yang J, Hou X, Dai J, Hu Y. 2012. The effect of collagen-binding vascular endothelial growth factor on the remodeling of scarred rat uterus following full-thickness injury. Biomaterials 33:1801-1807. https://doi.org/10.1016/j.biomaterials.2011.11.038
  20. Mahla RS. 2016. Stem cells applications in regenerative medicine and disease therapeutics. Int. J. Cell Biol. 2016:6940283.
  21. Michiels C. 2003. Endothelial cell functions. J. Cell. Physiol. 196:430-443. https://doi.org/10.1002/jcp.10333
  22. Ng ES, Davis R, Stanley EG, Elefanty AG. 2008. A protocol describing the use of a recombinant protein-based, animal product-free medium (APEL) for human embryonic stem cell differentiation as spin embryoid bodies. Nat. Protoc. 3:768-776. https://doi.org/10.1038/nprot.2008.42
  23. Nourse MB, Halpin DE, Scatena M, Mortisen DJ, Tulloch NL, Hauch KD, Torok-Storb B, Ratner BD, Pabon L, Murry CE. 2010. VEGF induces differentiation of functional endothelium from human embryonic stem cells: implications for tissue engineering. Arterioscler. Thromb. Vasc. Biol. 30:80-89. https://doi.org/10.1161/ATVBAHA.109.194233
  24. Nowak-Imialek M, Kues W, Carnwath JW, Niemann H. 2011. Pluripotent stem cells and reprogrammed cells in farm animals. Microsc. Microanal. 17:474-497. https://doi.org/10.1017/S1431927611000080
  25. Olmer R, Engels L, Usman A, Menke S, Malik MNH, Pessler F, Gohring G, Bornhorst D, Bolten S, Abdelilah-Seyfried S, Scheper T, Kempf H, Zweigerdt R, Martin U. 2018. Differentiation of human pluripotent stem cells into functional endothelial cells in scalable suspension culture. Stem Cell Reports 10:1657-1672. https://doi.org/10.1016/j.stemcr.2018.03.017
  26. Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L. 2006. VEGF receptor signalling - in control of vascular function. Nat. Rev. Mol. Cell Biol. 7:359-371. https://doi.org/10.1038/nrm1911
  27. Romito A and Cobellis G. 2016. Pluripotent stem cells: current understanding and future directions. Stem Cells Int. 2016:9451492.
  28. Shin JH, Seo BG, Lee IW, Kim HJ, Seo EC, Lee KM, Jeon SB, Baek SK, Kim TS, Lee JH, Choi JW, Hwangbo C, Lee JH. 2022. Functional characterization of endothelial cells differentiated from porcine epiblast stem cells. Cells 11:1524.
  29. Song G, Li X, Shen Y, Qian L, Kong X, Chen M, Cao K, Zhang F. 2015. Transplantation of iPSc restores cardiac function by promoting angiogenesis and ameliorating cardiac remodeling in a post-infarcted swine model. Cell Biochem. Biophys. 71:1463-1473. https://doi.org/10.1007/s12013-014-0369-7
  30. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. 2007. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861-872. https://doi.org/10.1016/j.cell.2007.11.019
  31. Telugu BP, Ezashi T, Roberts RM. 2010. Porcine induced pluripotent stem cells analogous to naive and primed embryonic stem cells of the mouse. Int. J. Dev. Biol. 54:1703-1711. https://doi.org/10.1387/ijdb.103200bt
  32. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA. 2007. Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917-1920. https://doi.org/10.1126/science.1151526