DOI QR코드

DOI QR Code

The effect of gelatin-coating on embryonic stem cells as assessed by measuring Young's modulus using an atomic force microscope

  • Hyunhee Song (Department of Life Science, Jeonbuk National University) ;
  • Hoon Jang (Department of Life Science, Jeonbuk National University)
  • Received : 2023.07.24
  • Accepted : 2023.08.24
  • Published : 2023.09.30

Abstract

Background: Coating a culture plate with molecules that aid in cell adhesion is a technique widely used to produce animal cell cultures. Extracellular matrix (ECM) is known for its efficiency in promoting adhesion, survival, and proliferation of adherent cells. Gelatin, a cost-effective type of ECM, is widely used in animal cell cultures including feeder-free embryonic stem (ES) cells. However, the optimal concentration of gelatin is a point of debate among researchers, with no studies having established the optimal gelatin concentration. Methods: In this study, we coated plastic plates with gelatin in a concentration-dependent manner and assessed Young's modulus using atomic force microscopy (AFM) to investigate the microstructure of the surface of each plastic plate. The adhesion, proliferation, and differentiation of the ESCs were compared and analyzed revealing differences in surface microstructure dependent on coating concentration. Results: According to AFM analysis, there was a clear difference in the microstructure of the surface according to the presence or absence of the gelatin coating, and it was confirmed that there was no difference at a concentration of 0.5% or more. ES cell also confirmed the difference in cell adhesion, proliferation, and differentiation according to the presence or absence of gelatin coating, and also it showed no difference over the concentration of 0.5%. Conclusions: The optimum gelatin-coating for the maintenance and differentiation of ES cells is 0.5%, and the gelatin concentration-mediated microenvironment and ES cell signaling are closely correlated.

Keywords

Acknowledgement

This research was supported by a grant from the National Research Foundation of Korea (NRF), with money provided by the Korean government (MSIT) (No. 2021R1C1C1011346), and the National University Promotion Program at Jeonbuk National University in 2021.

References

  1. Alcaraz J, Otero J, Jorba I, Navajas D. 2018. Bidirectional mechanobiology between cells and their local extracellular matrix probed by atomic force microscopy. Semin. Cell Dev. Biol. 73:71-81. https://doi.org/10.1016/j.semcdb.2017.07.020
  2. Chen Y, T Mak A, Wang M, Li J. 2005. Biomimetic coating of apatite/collagen composite on Poly L-lactic Acid facilitates cell seeding. Conf. Proc. IEEE Eng. Med. Biol. Soc. 4087-4090.
  3. Cornelissen CG, Dietrich M, Gromann K, Frese J, Krueger S, Sachweh JS, Jockenhoevel S. 2013. Fibronectin coating of oxygenator membranes enhances endothelial cell attachment. Biomed. Eng. Online 12:7.
  4. De Visscher G, Mesure L, Meuris B, Ivanova A, Flameng W. 2012. Improved endothelialization and reduced thrombosis by coating a synthetic vascular graft with fibronectin and stem cell homing factor SDF-1α. Acta Biomater. 8:1330-1338. https://doi.org/10.1016/j.actbio.2011.09.016
  5. Egger M, Tovar GE, Hoch E, Southan A. 2016. Gelatin methacrylamide as coating material in cell culture. Biointerphases 11:021007.
  6. El-Ghannam A, Starr L, Jones J. 1998. Laminin-5 coating enhances epithelial cell attachment, spreading, and hemidesmosome assembly on Ti-6A1-4V implant material in vitro. J. Biomed. Mater. Res. 41:30-40. https://doi.org/10.1002/(SICI)1097-4636(199807)41:1<30::AID-JBM4>3.0.CO;2-R
  7. Foppiano S, Marshall SJ, Saiz E, Tomsia AP, Marshall GW. 2006. Functionally graded bioactive coatings: reproducibility and stability of the coating under cell culture conditions. Acta Biomater. 2:133-142. https://doi.org/10.1016/j.actbio.2005.12.003
  8. Giol ED, Van Vlierberghe S, Unger RE, Kersemans K, de Vos F, Kirkpatrick CJ, Dubruel P. 2019. Biomimetic strategy towards gelatin coatings on PET. Effect of protocol on coating stability and cell-interactive properties. J. Mater. Chem. B 7:1258-1269. https://doi.org/10.1039/C8TB02676A
  9. Heuer J, Bremer S, Pohl I, Spielmann H. 1993. Development of an in vitro embryotoxicity test using murine embryonic stem cell cultures. Toxicol. In Vitro 7:551-556. https://doi.org/10.1016/0887-2333(93)90064-C
  10. Kuznetsov YG and McPherson A. 2011. Atomic force microscopy in imaging of viruses and virus-infected cells. Microbiol. Mol. Biol. Rev. 75:268-285. https://doi.org/10.1128/MMBR.00041-10
  11. Lee SW, Lee HJ, Hwang HS, Ko K, Han DW, Ko K. 2015. Optimization of Matrigel-based culture for expansion of neural stem cells. Anim. Cells Syst. 19:175-180. https://doi.org/10.1080/19768354.2015.1035750
  12. Leino M, Astrand C, Hughes-Brittain N, Robb B, McKean R, Chotteau V. 2018. Human embryonic stem cell dispersion in electrospun PCL fiber scaffolds by coating with laminin-521 and E-cadherin-Fc. J. Biomed. Mater. Res. B Appl. Biomater. 106:1226-1236. https://doi.org/10.1002/jbm.b.33928
  13. Liu CY, Matsusaki M, Akashi M. 2015. Control of cell-cell distance and cell densities in millimeter-sized 3D tissues constructed by collagen nanofiber coating techniques. ACS Biomater. Sci. Eng. 1:639-645. https://doi.org/10.1021/acsbiomaterials.5b00015
  14. Min SK, Kang HK, Jang DH, Jung SY, Kim OB, Min BM, Yeo IS. 2013. Titanium surface coating with a laminin-derived functional peptide promotes bone cell adhesion. Biomed Res. Int. 2013:638348.
  15. Niwa D, Fujie T, Lang T, Goda N, Takeoka S. 2012. Heterofunctional nanosheet controlling cell adhesion properties by collagen coating. J. Biomater. Appl. 27:131-141. https://doi.org/10.1177/0885328210394470
  16. Oyane A, Uchida M, Ito A. 2005. Laminin-apatite composite coating to enhance cell adhesion to ethylene-vinyl alcohol copolymer. J. Biomed. Mater. Res. A 72:168-174. https://doi.org/10.1002/jbm.a.30205
  17. Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE. 1997. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276:1109-1112. https://doi.org/10.1126/science.276.5315.1109
  18. Rozario T and DeSimone DW. 2010. The extracellular matrix in development and morphogenesis: a dynamic view. Dev. Biol. 341:126-140. https://doi.org/10.1016/j.ydbio.2009.10.026
  19. Schenke-Layland K, Angelis E, Rhodes KE, Heydarkhan-Hagvall S, Mikkola HK, Maclellan WR. 2007. Collagen IV induces trophoectoderm differentiation of mouse embryonic stem cells. Stem Cells 25:1529-1538. https://doi.org/10.1634/stemcells.2006-0729
  20. Schmidmaier G, Wildemann B, Lubberstedt M, Haas NP, Raschke M. 2003. IGF-I and TGF-beta 1 incorporated in a poly (D,L-lactide) implant coating stimulates osteoblast differentiation and collagen-1 production but reduces osteoblast proliferation in cell culture. J. Biomed. Mater. Res. B Appl. Biomater. 65:157-162. https://doi.org/10.1002/jbm.b.10513
  21. Shan Y and Wang H. 2015. The structure and function of cell membranes examined by atomic force microscopy and single-molecule force spectroscopy. Chem. Soc. Rev. 44:3617-3638. https://doi.org/10.1039/C4CS00508B
  22. Sugimoto Y, Pou P, Abe M, Jelinek P, Perez R, Morita S, Custance O. 2007. Chemical identification of individual surface atoms by atomic force microscopy. Nature 446:64-67. https://doi.org/10.1038/nature05530
  23. Tamura RN, Oda D, Quaranta V, Plopper G, Lambert R, Glaser S, Jones JC. 1997. Coating of titanium alloy with soluble laminin-5 promotes cell attachment and hemidesmosome assembly in gingival epithelial cells: potential application to dental implants. J. Periodontal Res. 32:287-294. https://doi.org/10.1111/j.1600-0765.1997.tb00536.x
  24. Tielens S, Declercq H, Gorski T, Lippens E, Schacht E, Cornelissen M. 2007. Gelatin-based microcarriers as embryonic stem cell delivery system in bone tissue engineering: an invitro study. Biomacromolecules 8:825-832. https://doi.org/10.1021/bm060870u
  25. Wang X, Liu H, Zhu M, Cao C, Xu Z, Tsatskis Y, Lau K, Kuok C, Filleter T, McNeill H, Simmons CA, Hopyan S, Sun Y. 2018. Mechanical stability of the cell nucleus - roles played by the cytoskeleton in nuclear deformation and strain recovery. J. Cell Sci. 131:jcs209627.
  26. Williams RL, Hilton DJ, Pease S, Willson TA, Stewart CL, Gearing DP, Wagner EF, Metcalf D, Nicola NA, Gough NM. 1988. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336:684-687. https://doi.org/10.1038/336684a0
  27. Yamashita S, Ohashi K, Utoh R, Okano T, Yamamoto M. 2015. Human laminin isotype coating for creating islet cell sheets. Cell Med. 8:39-46. https://doi.org/10.3727/215517915X689029
  28. Ye S, Li W, Wang H, Zhu L, Wang C, Yang Y. 2021. Quantitative nanomechanical analysis of small extracellular vesicles for tumor malignancy indication. Adv. Sci. (Weinh.) 8:e2100825.