DOI QR코드

DOI QR Code

Hydrogen Embrittlement Properties of SA-723 steel via controlling Gaseous Hydrogen Pre-charging Condition

가스 수소 장입 조건 제어를 통한 SA-723 강의 수소 취화 특성 평가

  • Kangjin Lee (Division of Advanced Materials Engineering, Kongju National University) ;
  • Jeonghwan Kim (Institute of Gas Safety R&D, Korea Gas Safety Corporation) ;
  • Hwayoung Lee (Institute of Gas Safety R&D, Korea Gas Safety Corporation) ;
  • Dohoon Kim (Institute of Gas Safety R&D, Korea Gas Safety Corporation) ;
  • Soonjik Hong (Division of Advanced Materials Engineering, Kongju National University) ;
  • Gian Song (Division of Advanced Materials Engineering, Kongju National University)
  • 이강진 (공주대학교 신소재공학과) ;
  • 김정환 (한국가스안전공사 가스안전연구원) ;
  • 이화영 (한국가스안전공사 가스안전연구원) ;
  • 김도훈 (한국가스안전공사 가스안전연구원) ;
  • 홍순직 (공주대학교 신소재공학과) ;
  • 송기안 (공주대학교 신소재공학과)
  • Received : 2023.11.02
  • Accepted : 2023.11.23
  • Published : 2023.11.30

Abstract

In this study, hydrogen embrittlement (HE) behavior of a SA-723 steel via controlling gaseous hydrogen pre-charging condition has been analyzed. The gaseous hydrogen charging of the SA-723 steel was performed under a constant pressure of 20 MPa of gaseous H2 at 150℃ and 300℃ for 2 and 6h, and TDS, SSRT and Charpy tests were conducted to analyze the hydrogen embrittlement (HE) behavior of the SA-723 steel. Furthermore, prior to commencing the test, these specimens were coated with Zn to prevent hydrogen from diffusing out of a specimen during the tests. The TDS results showed that the 300℃-6h and 150℃-6h charged steels contain larger amounts of hydrogen than 300℃-2h and 150℃-2h charged steel. The SSRT and Charpy test results also showed the similar trends that the mechanical properties of the steels deteriorate as the amount of hydrogen charged in the steel increases. Therefore, this study suggests that, for SA-723 steel, the charging time parameter is more effective to charge more amount of hydrogen into SA-723 steel, rather than the charging temperature.

Keywords

Acknowledgement

본 논문은 산업통상자원부의 재원으로 한국에너지기술평가원의 지원을 받아 수행된 연구임(No. 20215810100090). 본 논문은 산업통상자원부 및 한국산업기술진흥원의 기반구축 사업의 지원을 받아 수행된 연구임(No. P0018009). 본 논문은 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 지원을 받아 수행된 연구임(No. 2021RIS-004).

References

  1. A. R. Troiano: Transactions of the ASM 52 (1960) 54-81. 
  2. H. K. Birnbaum and P. Sofronis: Materials Science and Engineering A 176(1-2) (1994) 191-202.  https://doi.org/10.1016/0921-5093(94)90975-X
  3. J. Lufrano, P. Sofronis, and H. Birnbaum: Journal of the Mechanics and Physics of Solids 44(2) (1996) 179-205.  https://doi.org/10.1016/0022-5096(95)00075-5
  4. B. P. Somerday, J. A. Campbell, K. L. Lee, J. A. Ronevich, and C. San Marchi: International Journal of Hydrogen Energy 42(11) (2017) 7314-7321.  https://doi.org/10.1016/j.ijhydene.2016.04.189
  5. C. Park, N. Kang, and S. Liu: Corrosion Science 128 (2017) 33-41.  https://doi.org/10.1016/j.corsci.2017.08.032
  6. Y. Zhao, D. -H. Lee, M. -Y. Seok, J. -A. Lee, M. Phaniraj, J. -Y. Suh, H. -Y. Ha, J. -Y. Kim, U. Ramamurty, and J.-i. Jang: Scripta Materialia 135 (2017) 54-58.  https://doi.org/10.1016/j.scriptamat.2017.03.029
  7. J. Lee, T. Lee, D. -J. Mun, C. M. Bae, and C. S. Lee: Scientific Reports 9(1) (2019) 5219. 
  8. D. H. Chung, Y. K. Kim, Y. K. Kim, S. Y. Song, H. J. Kwon, S. S. Sohn, and Y. S. Na: Corrosion Science 215 (2023) 111023. 
  9. Y. Bai, Y. Momotani, M. Chen, A. Shibata, and N. Tsuji: Materials Science and Engineering: A 651 (2016) 935-944.  https://doi.org/10.1016/j.msea.2015.11.017
  10. Z. Fu, B. Yang, M. Chen, G. Gou, and H. Chen: International Journal of Hydrogen Energy 46(9) (2021) 6970-6978.  https://doi.org/10.1016/j.ijhydene.2020.11.154
  11. L. T. H. Nguyen, J. -S. Hwang, M. -S. Kim, J. -H. Kim, S. -K. Kim, and J. -M. Lee: Metals 9(6) (2019) 625. 
  12. Y. Liu, X. Zu, C. Li, S. Qiu, W. Li, and X. Huang: Scripta Materialia 52(9) (2005) 821-825. 
  13. C. Case: 2938 Hydrogen crack growth rate constants, threshold stress intensity factor KIH, and critical crack size requirementes for SA-372 and SA-723 Steels Section VIII, Division 3, A. BPVC, December (2018). 
  14. A. ASTM: West Conshohecken, PA: ASTM International Committee on Standards, Philadelphia (2012). 
  15. J. -H. Jeon and J. K. Jang: KIGAS 26(3) (2022) 21-26. 
  16. T. Depover and K. Verbeken: International Journal of Hydrogen Energy 43(5) (2018) 3050-3061.  https://doi.org/10.1016/j.ijhydene.2017.12.109
  17. J. Barranco, P. Cote, and J. Kapp: ARCCB. TR-9202 (1992). 
  18. G. R. Edwards, D. L. Olson, S. Liu, C.S.O.M.G.C.W. RESEARCH, High Strength Steel Welding Research, Center for Welding, Joining and Coatings Research, Colorado School of Mines (1998). 
  19. D. Perez Escobar, E. Wallaert, L. Duprez, A. Atrens, and K. Verbeken: Metals and Materials International 19 (2013) 741-748.  https://doi.org/10.1007/s12540-013-4013-7
  20. C. San Marchi, B. Somerday, X. Tang, and G. Schiroky: International Journal of Hydrogen Energy 33(2) (2008) 889-904.  https://doi.org/10.1016/j.ijhydene.2007.10.046
  21. C. San Marchi, D. K. Balch, K. Nibur, and B. Somerday: Journal of Pressure Vessel Technology 130(4) (2008) 041401. 
  22. S. Bellini, Y. Sun, F. Gallucci, and A. Caravella: Membranes 8(3) (2018) 82. 
  23. L. Liu and H. Gong: RSC Advances 11(22) (2021) 13644-13652.  https://doi.org/10.1039/D0RA10133H
  24. B. Meng, C. Gu, L. Zhang, C. Zhou, X. Li, Y. Zhao, J. Zheng, X. Chen, and Y. Han: International Journal of Hydrogen Energy 42(11) (2017) 7404-7412. https://doi.org/10.1016/j.ijhydene.2016.05.145