DOI QR코드

DOI QR Code

Atypical formations of gintonin lysophosphatidic acids as new materials and their beneficial effects on degenerative diseases

  • Ji-Hun Kim (Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University) ;
  • Ra Mi Lee (Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University) ;
  • Hyo-Bin Oh (Department of Efficacy Study, Institute of Jinan Red Ginseng) ;
  • Tae-Young Kim (Department of Efficacy Study, Institute of Jinan Red Ginseng) ;
  • Hyewhon Rhim (Center for Neuroscience, Korea Institute of Science and Technology, Bio/Molecular Informatics Center) ;
  • Yoon Kyung Choi (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Jong-Hoon Kim (College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University) ;
  • Seikwan Oh (Department of Molecular Medicine, School of Medicine, Ewha Womans University) ;
  • Do-Geun Kim (Dementia Research Group, Korea Brain Research Institute) ;
  • Ik-Hyun Cho (Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University) ;
  • Seung-Yeol Nah (Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University)
  • Received : 2022.12.13
  • Accepted : 2023.02.12
  • Published : 2024.01.01

Abstract

Fresh ginseng is prone to spoilage due to its high moisture content. For long-term storage, most fresh ginsengs are dried to white ginseng (WG) or steamed for hours at high temperature/pressure and dried to form Korean Red ginseng (KRG). They are further processed for ginseng products when subjected to hot water extraction/concentration under pressure. These WG or KRG preparation processes affect ginsenoside compositions and also other ginseng components, probably during treatments like steaming and drying, to form diverse bioactive phospholipids. It is known that ginseng contains high amounts of gintonin lysophosphatidic acids (LPAs). LPAs are simple lipid-derived growth factors in animals and humans and act as exogenous ligands of six GTP-binding-protein coupled LPA receptor subtypes. LPAs play diverse roles ranging from brain development to hair growth in animals and humans. LPA-mediated signaling pathways involve various GTP-binding proteins to regulate downstream pathways like [Ca2+]i transient induction. Recent studies have shown that gintonin exhibits anti-Alzheimer's disease and antiarthritis effects in vitro and in vivo mediated by gintonin LPAs, the active ingredients of gintonin, a ginseng-derived neurotrophin. However, little is known about how gintonin LPAs are formed in high amounts in ginseng compared to other herbs. This review introduces atypical or non-enzymatic pathways under the conversion of ginseng phospholipids into gintonin LPAs during steaming and extraction/concentration processes, which exert beneficial effects against degenerative diseases, including Alzheimer's disease and arthritis in animals and humans via LPA receptors.

Keywords

Acknowledgement

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (2023R1A2C1003481).

References

  1. Park HJ, Kim DH, Park SJ, Kim JM, Ryu JH. Ginseng in traditional herbal prescriptions. Ginseng Res 2012;36(3):225-41. https://doi.org/10.5142/jgr.2012.36.3.225
  2. Nah SY. Ginseng ginsenoside pharmacology in the nervous system: involvement in the regulation of ion channels and receptors. Front Physiol 2014;5:98.
  3. Gong YJ, Sui Y, Han CH, Ning XF. Drying ginseng slices using a combination of microwave and far-infrared drying techniques. J. of Biosystems Eng 2016 3;41(1):34-42. https://doi.org/10.5307/JBE.2016.41.1.034
  4. Liu YZ, Du EX. Ginseng processing technology. Research on Ginseng 1994;1:39-40.
  5. Lee SM, Bae BS, Park HW, Ahn NG, Cho BG, Cho YL, Kwak YS. Characterization of Korean red ginseng (panax ginseng meyer): history, preparation method, and chemical composition. J Ginseng Res 2015;39(4):384-91. https://doi.org/10.1016/j.jgr.2015.04.009
  6. Suzuki Y, Choi KJ, Uchida K, Ko SR. Effects of the preheating treatments of raw ginseng in the model system on the synthesis of the maillard type-browning reaction products of red ginseng. Journal of Ginseng Research 2004;28(3):136-42. https://doi.org/10.5142/JGR.2004.28.3.136
  7. In G, Ahn NG, Bae BS, Lee MW, Park HW, Jang KH, Cho BG, Han CK, Park CK, Kwak YS. In situ analysis of chemical components induced by steaming between fresh ginseng, steamed ginseng, and red ginseng. J Ginseng Res 2017;41(3):361-9. https://doi.org/10.1016/j.jgr.2016.07.004
  8. Choi KJ, Kim DH. Studies on the lipid components of fresh ginseng, red ginseng and white ginseng. Korean J Pharmacog 1985;15(3):141~150.
  9. Kim UG, Lee CS, Jeong BG. Distribution of lipids in panax ginseng root. Journal of Ginseng Research 1988;12(2):93-103.
  10. Kim SH, Kim SY, Choi HK. Lipids in ginseng (panax ginseng) and their analysis. Natural Product Sciences 2018;24(1):1-12. https://doi.org/10.20307/nps.2018.24.1.1
  11. Cho HJ, Choi SH, Kim HJ, Lee BH, Rhim H, Kim HC, Hwang SH, Nah SY. Bioactive lipids in gintonin-enriched fraction from ginseng. J Ginseng Res 2019;43(2):209-17. https://doi.org/10.1016/j.jgr.2017.11.006
  12. Pyo MK, Choi SH, Hwang SH, Shin TJ, Lee BH, Lee SM, Lim YH, Kim DH, Nah SY. Novel glycolipoproteins from ginseng. J Ginseng Res 2011;35:92-103. https://doi.org/10.5142/jgr.2011.35.1.092
  13. Hwang SH, Shin TJ, Choi SH, Cho HJ, Lee B-H, Pyo MK, et al. Gintonin, newly identified compounds from ginseng, is novel lysophosphatidic acids-protein complexes and activates G protein-coupled lysophosphatidic acid receptors with high affinity. Mol Cells 2012;33:151-62. https://doi.org/10.1007/S10059-012-2216-z
  14. Choi SH, Jung SW, Lee BH, Kim HJ, Hwang SH, Kim HK, Nah SY. Ginseng pharmacology: a new paradigm based on gintonin-lysophosphatidic acid receptor interactions. Front Pharmacol 2015;27(6):245.
  15. Kim HJ, Jung SW, Kim SY, Cho IH, Kim HC, Rhim H, Kim M, Nah SY. Panax ginseng as an adjuvant treatment for Alzheimer's disease. J Ginseng Res 2018;42(4):401-11. https://doi.org/10.1016/j.jgr.2017.12.008
  16. Ikram M, Ullah R, Khan A, Kim MO. Ongoing research on the role of gintonin in the management of neurodegenerative disorders. Cells 2020;9(6):1464.
  17. Jakaria M, Azam S, Go EA, Uddin MS, Jo SH, Choi DK. Biological evidence of gintonin efficacy in memory disorders. Pharmacol Res 2021;163:105221.
  18. Choi SH, Lee R, Nam SM, Kim DG, Cho IH, Kim HC, Cho Y, Rhim H, Nah SY. Ginseng gintonin, aging societies, and geriatric brain diseases. Integr Med Res 2021;10(1):100450.
  19. Birgbauer E. Lysophosphatidic acid signalling in nervous system development and function. Neuromolecular Med 2021;23(1):68-85. https://doi.org/10.1007/s12017-020-08630-2
  20. Das AK, Hajra AK. Quantification, characterization and fatty acid composition of lysophosphatidic acid in different rat tissues. Lipids 1989;24(4):329-33. https://doi.org/10.1007/BF02535172
  21. Tigyi G, Parrill AL. Molecular mechanisms of lysophosphatidic acid action. Prog Lipid Res 2003;42(6):498-526. https://doi.org/10.1016/S0163-7827(03)00035-3
  22. Lee BH, Choi SH, Kim HJ, Jung SW, Kim HK, Nah SY. Plant lysophosphatidic acids: a rich source for bioactive lysophosphatidic acids and their pharmacological applications. Biol Pharm Bull 2016;39(2):156-62. https://doi.org/10.1248/bpb.b15-00575
  23. Chun J, Hla T, Lynch KR, Spiegel S, Moolenaar WH. International union of basic and clinical pharmacology. LXXVIII. Lysophospholipid receptor nomenclature. Pharmacol 2010;62:579-87.
  24. Inoue A, Ishiguro J, Kitamura H, Arima N, Okutani M, Shuto A, Higashiyama S, Ohwada T, Arai H, Makide K, et al. TGFa shedding assay: an accurate and versatile method for detecting GPCR activation. Nat. Methods 2012;9:1021-9. https://doi.org/10.1038/nmeth.2172
  25. Oka S, Nakajima K, Yamashita A, Kishimoto S, Sugiura T. Identification of GPR55 as a lysophosphatidylinositol receptor. Biochem Biophys Res Commun 2007;362:928-34. https://doi.org/10.1016/j.bbrc.2007.08.078
  26. Sugo T, Tachimoto H, Chikatsu T, Murakami Y, Kikukawa Y, Sato S, Kikuchi K, Nagi T, Harada M, Ogi K, et al. Identification of a lysophosphatidylserine receptor on mast cells. Biochem Biophys Res Commun 2006;341:1078-87. https://doi.org/10.1016/j.bbrc.2006.01.069
  27. Cho YJ, Choi SH, Lee R, Hwang H, Rhim H, Cho IH, Kim HC, Lee JI, Hwang SH, Nah SY. Ginseng gintonin contains ligands for GPR40 and GPR55. Molecules 2020;25(5):1102.
  28. Aloulou A, Rahier R, Arhab Y, Noiriel A, Abousalham A. Phospholipases: an overview. Methods Mol Biol 2018;1835:69-105. https://doi.org/10.1007/978-1-4939-8672-9_3
  29. Murakami M, Taketomi Y, Sato H, Yamamoto K. Secreted phospholipase A2 revisited. J Biochem 2011;150(3):233-55. https://doi.org/10.1093/jb/mvr088
  30. Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 1992;258(5082):607-14. https://doi.org/10.1126/science.1411571
  31. Kotzampasi DM, Premeti K, Papafotika A, Syropoulou V, Christoforidis S, Cournia Z, Leondaritis G. The orchestrated signaling by PI3Ka and PTEN at the membrane interface. Comput Struct Biotechnol J 2022;20:5607-21. https://doi.org/10.1016/j.csbj.2022.10.007
  32. Bowling FZ, Frohman MA, Airola MV. Structure and regulation of human phospholipase D. Adv Biol Regul 2021;79:100783.
  33. Jose A, Kienesberger PC. Autotaxin-LPA-LPP3 Axis in energy metabolism and metabolic disease. Int J Mol Sci 2021;22(17):9575.
  34. Blusztajn JK, Slack BE, Mellott TJ. Neuroprotective actions of dietary choline. Nutrients 2017;9(8):815.
  35. Grit M, Crommelin D. Chemical stability of liposomes: implications for their physical stability. Chemistry and Physics of Lipids 1993;64(1-3):3-18. https://doi.org/10.1016/0009-3084(93)90053-6
  36. Grit M, Desmidt J, Struijke A, Crommelin D. Hydrolysis of phosphatidylcholine in aqueous liposome dispersions. International Journal of Pharmaceutics 1989;50(1):1-6.
  37. Grit M, Underberg WJM, Crommelin DJA. Hydrolysis of saturated soybean phosphatidylcholine in aqueous liposome dispersions. J Pharm Sci 1993;82(4):362-6.
  38. Eibl H, Lands WE. Phosphorylation of 1-alkenyl-2-acylglycerol and preparation of 2-acylphosphoglycerides. Biochemistry 1970 Jan 20;9(2):423-8. https://doi.org/10.1021/bi00804a033
  39. Sugasini D, Subbaiah PV. Rate of acyl migration in lysophosphatidylcholine (LPC) is dependent upon the nature of the acyl group. Greater stability of sn-2 docosahexaenoyl LPC compared to the more saturated LPC species. PLoS One 2017;12(11):e0187826.
  40. Okudaira M, Inoue A, Shuto A, Nakanaga K, Kano K, Makide K, Saigusa D, Tomioka Y, Aoki J. Separation and quantification of 2-acyl-1-lysophospholipids and 1-acyl-2-lysophospholipids in biological samples by LC-MS/MS. J Lipid Res 2014;55(10):2178-92. https://doi.org/10.1194/jlr.D048439
  41. Pluckthun A, Dennis EA. Acyl and phosphoryl migration in lysophospholipids: importance in phospholipid synthesis and phospholipase specificity. Biochemistry 1982;21(8):1743-50. https://doi.org/10.1021/bi00537a007
  42. Choi SH, Hong MK, Kim HJ, Ryoo N, Rhim H, Nah SY, Kang LW. Structure of ginseng major latex-like protein 151 and its proposed lysophosphatidic acid-binding mechanism. Acta Crystallogr D Biol Crystallogr 2015;71(Pt 5):1039-50. https://doi.org/10.1107/S139900471500259X
  43. Lee R, Cho HS, Kim JH, Cho HJ, Choi SH, Hwang SH, Rhim H, Cho IH, Rhee MH, Kim DG, et al. A novel protocol for batch-separating gintonin-enriched, polysaccharide-enriched, and crude ginsenoside-containing fractions from ginseng. Journal of Ginseng Research 20 October 2022. Available online.
  44. Kim WK, Kim ES. Structure and function of the secretory ducts in Panax ginseng C. A. Mayer. Kor. Jour. Electron Microscopy 1980;10(2):77-86.
  45. Lee KH, Lee SS, Lee MG, Kim ES. Identification of root age by histochemical staining of secretory duct layers in ginseng. J. Ginseng Res. 2001;25(2):101-5.
  46. Hwang SH, Lee BH, Choi SH, Kim HJ, Jung SW, Kim HS, Shin HC, Park HJ, Park KH, Lee MK, et al. Gintonin, a novel ginseng-derived lysophosphatidic acid receptor ligand, stimulates neurotransmitter release. Neurosci Lett 2015;584:356-61.
  47. Kim H, Lee BH, Choi SH, Kim HJ, Jung SW, Hwang SH, Rhim H, Kim HC, Cho IH, Nah SY. Gintonin stimulates gliotransmitter release in cortical primary astrocytes. Neurosci Lett 2015;603:19-24. https://doi.org/10.1016/j.neulet.2015.07.012
  48. Kim HJ, Shin EJ, Lee BH, Choi SH, Jung SW, Cho IH, Hwang SH, Kim JY, Han JS, Chung C, et al. Oral administration of gintonin attenuates cholinergic impairments by scopolamine, amyloid-b protein, and mouse model of alzheimer's disease. Mol Cells 2015;38(9):796-805. https://doi.org/10.14348/molcells.2015.0116
  49. Lee BH, Kim J, Lee RM, Choi SH, Kim HJ, Hwang SH, Lee MK, Bae CS, Kim HC, Rhim H, et al. Gintonin enhances performance of mice in rotarod test: involvement of lysophosphatidic acid receptors and catecholamine release. Neurosci Lett 2016;612:256-60. https://doi.org/10.1016/j.neulet.2015.12.026
  50. Kim HJ, Park SD, Lee RM, Lee BH, Choi SH, Hwang SH, Rhim H, Kim HC, Nah SY. Gintonin attenuates depressive-like behaviors associated with alcohol withdrawal in mice. J Affect Disord 2017;215:23-9. https://doi.org/10.1016/j.jad.2017.03.026
  51. Roza C, Campos-Sandoval JA, Gomez-Garcia MC, Penalver A, Marquez J. Lysophosphatidic acid and glutamatergic transmission. Front Mol Neurosci 2019;12:138.
  52. Park H, Kim S, Rhee J, Kim HJ, Han JS, Nah SY, Chung C. Synaptic enhancement induced by gintonin via lysophosphatidic acid receptor activation in central synapses. J Neurophysiol 2015;113(5):1493-500. https://doi.org/10.1152/jn.00667.2014
  53. Shin TJ, Kim HJ, Kwon BJ, Choi SH, Kim HB, Hwang SH, Lee BH, Lee SM, Zukin RS, Park JH, et al. Gintonin, a ginseng-derived novel ingredient, evokes long-term potentiation through N-methyl-D-aspartic acid receptor activation: involvement of LPA receptors. Mol Cells 2012;34(6):563-72. https://doi.org/10.1007/s10059-012-0254-4
  54. Hulshof LA, van Nuijs D, Hol EM, Middeldorp J. The role of astrocytes in synapse loss in alzheimer's disease: a systematic review. Front Cell Neurosci 2022;16:899251.
  55. Das AK, Hajra AK. Quantification, characterization and fatty acid composition of lysophosphatidic acid in different rat tissues. Lipids 1989;24(4):329e33.
  56. Sugiura T, Nakane S, Kishimoto S, Waku K, Yoshioka Y, Tokumura A. Lysophosphatidic acid, a growth factor-like lipid, in the saliva. J Lipid Res 2002;43(12):2049-55. https://doi.org/10.1194/jlr.M200242-JLR200
  57. Choi SH, Lee RM, Cho HS, Hwang SH, Hwang HI, Rhim H, Kim HC, Kim DG, Cho IH, Nah SY. Visualization of the binding between gintonin, a Panax ginseng-derived LPA receptor ligand, and the LPA receptor subtypes and transactivation of the EGF receptor. J Ginseng Res 2022;46(3):348-56. https://doi.org/10.1016/j.jgr.2021.10.004
  58. Masi G, Brovedani P. The hippocampus, neurotrophic factors and depression: possible implications for the pharmacotherapy of depression. CNS Drugs 2011;25(11):913-31.
  59. Lim HK, Kim K, Son YK, Nah SY, Ahn SM, Song M. Gintonin stimulates dendritic growth in striatal neurons by activating Akt and CREB. Front. Mol. Neurosci. 2022 Oct 26.
  60. Kim HJ, Kim DJ, Shin EJ, Lee BH, Choi SH, Hwang SH, Rhim H, Cho IH, Kim HC, Nah SY. Effects of gintonin-enriched fraction on hippocampal cell proliferation in wild-type mice and an APPswe/PSEN-1 double Tg mouse model of Alzheimer's disease. Neurochem Int 2016;101:56-65. https://doi.org/10.1016/j.neuint.2016.10.006
  61. Kim S, Kim MS, Park K, Kim HJ, Jung SW, Nah SY, Han JS, Chung C. Hippocampus-dependent cognitive enhancement induced by systemic gintonin administration. J Ginseng Res 2016;40(1):55-61. https://doi.org/10.1016/j.jgr.2015.05.001
  62. Choi SH, Lee R, Nam SM, Kim DG, Cho IH, Kim HC, Cho Y, Rhim H, Nah SY. Ginseng gintonin, aging societies, and geriatric brain diseases. Integr Med Res 2021;10(1):100450.
  63. Shoukr EMM, Mohamed AAE, El-Ashry AM, Mohsen HA. Effect of psychological first aid program on stress level and psychological well-being among caregivers of older adults with alzheimer's disease. BMC Nurs 2022;21(1):275.
  64. Hwang SH, Shin EJ, Shin TJ, Lee BH, Choi SH, Kang J, Kim HJ, Kwon SH, Jang CG, Lee JH, et al. Gintonin, a ginseng-derived lysophosphatidic acid receptor ligand, attenuates Alzheimer's disease-related neuropathies: involvement of non-amyloidogenic processing. J Alzheimers Dis 2012;31(1):207-23. https://doi.org/10.3233/JAD-2012-120439
  65. Ikram M, Jo MG, Park TJ, Kim MW, Khan I, Jo MH, Kim MO. Oral administration of gintonin protects the brains of mice against ab-induced alzheimer disease pathology: antioxidant and anti-inflammatory effects. Oxid Med Cell Longev 2021;2021:6635552.
  66. Iwarsson S, Andersson N, Slaug B, Nilsson MH. People with Parkinson's disease and housing issues: a scoping review. Health Sci Rep 2022;5(2):e511.
  67. Rahman MM, Wang X, Islam MR, Akash S, Supti FA, Mitu MI, Harun-OrRashid M, Aktar MN, Khatun Kali MS, Jahan FI, et al. Multifunctional role of natural products for the treatment of Parkinson's disease: at a glance. Front Pharmacol 2022;13:976385.
  68. Rissardo Jamir Pitton, Durante Icaro, Sharon Idan, Fornari Caprara Ana Leticia. Pimavanserin and Parkinson's disease psychosis: a narrative review. Brain Sci 2022;12(10):1286.
  69. Mijan MA, Kim JY, Moon SY, Choi SH, Nah SY, Yang HJ. Gintonin enhances proliferation, late stage differentiation, and cell survival from endoplasmic reticulum stress of oligodendrocyte lineage cells. Front Pharmacol 2019;10:1211.
  70. Jo MG, Ikram M, Jo MH, Yoo L, Chung KC, Nah SY, Hwang H, Rhim H, Kim MO. Gintonin mitigates MPTP-induced loss of nigrostriatal dopaminergic neurons and accumulation of a-synuclein via the Nrf2/HO-1 pathway. Mol Neurobiol 2019;56(1):39-55.
  71. Choi JH, Jang M, Oh S, Nah SY, Cho IH. Multi-target protective effects of gintonin in 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-Mediated model of Parkinson's disease via lysophosphatidic acid receptors. Front Pharmacol 2018;9:515.
  72. Jang M, Choi JH, Chang Y, Lee SJ, Nah SY, Cho IH. Gintonin, a ginseng-derived ingredient, as a novel therapeutic strategy for Huntington's disease: activation of the Nrf2 pathway through lysophosphatidic acid receptors. Brain Behav Immun 2019;80:146e62.
  73. Choi JH, Oh J, Lee MJ, Ko SG, Nah SY, Cho IH. Gintonin mitigates experimental autoimmune encephalomyelitis by stabilization of Nrf2 signaling via stimulation of lysophosphatidic acid receptors. Brain Behav Immun 2021;93:384-98. https://doi.org/10.1016/j.bbi.2020.12.004
  74. Nam SM, Choi JH, Choi SH, Cho HJ, Cho YJ, Rhim H, Kim HC, Cho IH, Kim DG, Nah SY. Ginseng gintonin alleviates neurological symptoms in the G93A-SOD1 transgenic mouse model of amyotrophic lateral sclerosis through lysophosphatidic acid 1 receptor. J Ginseng Res 2021;45(3):390-400. https://doi.org/10.1016/j.jgr.2020.04.002
  75. Moon J, Choi SH, Shim JY, Park HJ, Oh MJ, Kim M, Nah SY. Gintonin administration is safe and potentially beneficial in cognitively impaired elderly. Alzheimer Dis Assoc Disord 2018;32(1):85-7. https://doi.org/10.1097/WAD.0000000000000213
  76. Kim DG, Jang M, Choi SH, Kim HJ, Jhun H, Kim HC, Rhim H, Cho IH, Nah SY. Gintonin, a ginseng-derived exogenous lysophosphatidic acid receptor ligand, enhances blood-brain barrier permeability and brain delivery. Int J Biol Macromol 2018;114:1325-37. https://doi.org/10.1016/j.ijbiomac.2018.03.158
  77. Choi SH, Lee NE, Cho HJ, Lee RM, Rhim H, Kim HC, Han M, Lee EH, Park J, Nah SY. Gintonin facilitates brain delivery of donepezil, a therapeutic drug for Alzheimer disease, through lysophosphatidic acid 1/3 and vascular endothelial growth factor receptors. J Ginseng Res 2021;45(2):264-72. https://doi.org/10.1016/j.jgr.2019.12.002
  78. Lee WJ, Shin YW, Chang H, Shin HR, Kim WW, Jung SW, Choi SH, Kim M, Nah SY. Cognitive improvement effect of gintonin might be associated with blood-brain barrier permeability enhancement: dynamic contrast-enhanced MRI pilot study. Transl Clin Pharmacol 2021;29(1):21-32. https://doi.org/10.12793/tcp.2021.29.e2
  79. Kim M, Sur B, Villa T, Nah SY, Oh S. Inhibitory activity of gintonin on inflammation in human IL-1b-stimulated fibroblast-like synoviocytes and collagen-induced arthritis in mice. J Ginseng Res 2021 Jul;45(4):510-8. https://doi.org/10.1016/j.jgr.2020.12.001
  80. Kim M, Sur B, Villa T, Yun J, Nah SY, Oh S. Gintonin regulates inflammation in human IL-1b-stimulated fibroblast-like synoviocytes and carrageenan/kaolin-induced arthritis in rats through LPAR2. J Ginseng Res 2021 Sep;45(5):575-82. https://doi.org/10.1016/j.jgr.2021.02.001
  81. Weber A, Mak SH, Berenbaum F, Sellam J, Zheng YP, Han Y, Wen C. Association between osteoarthritis and increased risk of dementia: a systemic review and meta-analysis. Medicine (Baltimore) 2019 Mar;98(10):e14355.
  82. Sangha PS, Thakur M, Akhtar Z, Ramani S, Gyamfi RS. The link between rheumatoid arthritis and dementia: a review. Cureus 2020 Apr 27;12(4):e7855.