DOI QR코드

DOI QR Code

Finite element modeling of reinforced concrete beams externally bonded with PET-FRP laminates

  • Rami A. Hawileh (Department of Civil Engineering, American University of Sharjah) ;
  • Maha A. Assad (Department of Civil Engineering, American University of Sharjah) ;
  • Jamal A. Abdalla (Department of Civil Engineering, American University of Sharjah) ;
  • M. Z. Naser (School of Civil and Environmental Engineering & Earth Sciences, Clemson University)
  • 투고 : 2022.07.15
  • 심사 : 2023.09.06
  • 발행 : 2024.02.25

초록

Fiber-reinforced polymers (FRP) have a proven strength enhancement capability when installed into Reinforced Concrete (RC) beams. The brittle failure of traditional FRP strengthening systems has attracted researchers to develop novel materials with improved strength and ductility properties. One such material is that known as polyethylene terephthalate (PET). This study presents a numerical investigation of the flexural behavior of reinforced concrete beams externally strengthened with PET-FRP systems. This material is distinguished by its large rupture strain, leading to an improvement in the ductility of the strengthened structural members compared to conventional FRPs. A three-dimensional (3-D) finite element (FE) model is developed in this study to predict the load-deflection response of a series of experimentally tested beams published in the literature. The numerical model incorporates constitutive material laws and bond-slip behavior between concrete and the strengthening system. Moreover, the validated model was applied in a parametric study to inspect the effect of concrete compressive strength, PET-FRP sheet length, and reinforcing steel bar diameter on the overall performance of concrete beams externally strengthened with PET-FRP.

키워드

과제정보

The support for the research presented in this paper had been provided by Riad T. Al-Sadek Endowed Chair in Civil Engineering at the American University of Sharjah. The support is gratefully appreciated and acknowledged. The views and conclusions expressed or implied in this study are those of the authors and should not be interpreted as those of the donor or the institution.

참고문헌

  1. Abu-Obeidah, A.S., Abdalla, J.A. and Hawileh, R.A. (2019), "Shear strengthening of deficient concrete beams with marine grade aluminium alloy plates", Adv. Concrete Constr., 7(4), 249-262. https://doi.org/10.12989/acc.2019.7.4.249.
  2. Akbarzadeh Bengar, H. and Shahmansouri, A.A. (2020), "A new anchorage system for CFRP strips in externally strengthened RC continuous beams", J. Build. Eng., 30, 101230. https://doi.org/10.1016/j.jobe.2020.101230.
  3. Al-Obaidi, S., Saeed, Y.M. and Rad, F.N. (2020), "Flexural strengthening of reinforced concrete beams with NSM-CFRP bars using mechanical interlocking", J. Build. Eng., 31, 101422. https://doi.org/10.1016/j.jobe.2020.101422.
  4. Al-Saawani, M.A., El-Sayed, A.K. and Al-Negheimish, A.I. (2020), "Effect of shear-span/depth ratio on debonding failures of FRP-strengthened RC beams", J. Build. Eng., 32, 101771. https://doi.org/10.1016/j.jobe.2020.101771.
  5. American Concrete Institute and ACI Committee 440 (2017), Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures, American Concrete Institute, Farmington Hills, MI, USA.
  6. ANSYS-Release Version 19.2 (2019), A Finite Element Computer Software and User Manual for Nonlinear Structural Analysis, ANSYS, Inc., Canonsburg, PA, USA.
  7. Assad, M., Hawileh, R.A. and Abdalla, J.A. (2022), "Modeling the behavior of CFRP-strengthened RC slabs under fire exposure", Procedia Struct. Integr., 42, 1668-1675. https://doi.org/10.1016/j.prostr.2022.12.210.
  8. Attari, N., Amziane, S. and Chemrouk, M. (2012), "Flexural strengthening of concrete beams using CFRP, GFRP and hybrid FRP sheets", Constr. Build. Mater., 37, 746-757. https://doi.org/10.1016/j.conbuildmat.2012.07.052.
  9. Bencardino, F. and Condello, A. (2014), "Experimental study and numerical investigation of behavior of RC beams strengthened with steel reinforced grout", Comput. Concrete, 14(6), 711-725. https://doi.org/10.12989/cac.2014.14.6.711.
  10. Borg, R.P., Baldacchino, O. and Ferrara, L. (2016), "Early age performance and mechanical characteristics of recycled PET fibre reinforced concrete", Constr. Build. Mater., 108, 29-47. https://doi.org/10.1016/j.conbuildmat.2016.01.029.
  11. Brosens, K. (2001), "Anchorage of externally bonded steel plates and CFRP laminates for the strengthening of concrete elements", Doctoral Dissertation, Katholieke Universiteit Leuven, Leuven, Belgium.
  12. Chen, G.M., Teng, J.G., Chen, J.F. and Xiao, Q.G. (2015), "Finite element modeling of debonding failures in FRP-strengthened RC beams: A dynamic approach", Comput. Struct., 158, 167-183. https://doi.org/10.1016/j.compstruc.2015.05.023.
  13. Choobbor, S.S., Hawileh, R.A., Abu-Obeidah, A. and Abdalla, J.A. (2019), "Performance of hybrid carbon and basalt FRP sheets in strengthening concrete beams in flexure", Compos. Struct., 227, 111337. https://doi.org/10.1016/j.compstruct.2019.111337.
  14. Dai, J., Ueda, T. and Sato, Y. (2005), "Development of the nonlinear bond stress-slip model of fiber reinforced plastics sheet-concrete interfaces with a simple method", J. Compos. Constr., 9(1), 52-62. https://doi.org/10.1061/(asce)1090-0268(2005)9:1(52).
  15. Esmaeili, J., Aghdam, O.R., Andalibi, K., Kasaei, J. and Gencel, O. (2022), "Experimental and numerical investigations on a novel plate anchorage system to solve FRP debonding problem in the strengthened RC beams", J. Build. Eng., 45, 103413. https://doi.org/10.1016/j.jobe.2021.103413.
  16. Ferracuti, B., Savoia, M. and Mazzotti, C. (2007), "Interface law for FRP-concrete delamination", Compos. Struct., 80(4), 523-531. https://doi.org/10.1016/j.compstruct.2006.07.001.
  17. Gao, W.Y., Dai, J.G., Teng, J.G. and Chen, G.M. (2013), "Finite element modeling of reinforced concrete beams exposed to fire", Eng. Struct., 52, 488-501. https://doi.org/10.1016/j.engstruct.2013.03.017.
  18. Godat, A., Chaallal, O. and Obaidat, Y. (2020), "Non-linear finite-element investigation of the parameters affecting externally-bonded FRP flexural-strengthened RC beams", Result. Eng., 8, 100168. https://doi.org/10.1016/j.rineng.2020.100168
  19. Haryanto, Y., Hu, H.T., Han, A.L., Hsiao, F.P., Teng C.J. and Nugroho, L. (2021), "Numerical investigation on RC T-beams strengthened in the negative moment region using NSM FRP rods at various depth of embedment", Comput. Concrete, 28(4), 347-360. https://doi.org/10.12989/cac.2021.28.4.347.
  20. Hawileh, R.A. (2012), "Nonlinear finite element modeling of RC beams strengthened with NSM FRP rods", Constr. Build. Mater., 27(1), 461-471. https://doi.org/10.1016/j.conbuildmat.2011.07.018.
  21. Hawileh, R.A., El-Maaddawy, T.A. and Naser, M.Z. (2012), "Nonlinear finite element modeling of concrete deep beams with openings strengthened with externally-bonded composites", Mater. Des., 42, 378-387. https://doi.org/10.1016/j.matdes.2012.06.004.
  22. Hawileh, R.A., Mhanna, H.H., Al Rashed, A., Abdalla, J.A. and Naser, M.Z. (2022), "Flexural behavior of RC beams externally bonded with polyethylene terephthalate (PET) fiber reinforced polymer (FRP) laminates", Eng. Struct., 256, 114036. https://doi.org/10.1016/j.engstruct.2022.114036.
  23. Hawileh, R.A., Naser, M.Z. and Abdalla, J.A. (2013), "Finite element simulation of reinforced concrete beams externally strengthened with short-length CFRP plates", Compos. Part B: Eng., 45(1), 1722-1730. https://doi.org/10.1016/j.compositesb.2012.09.032.
  24. Hawileh, R.A., Rasheed, H.A., Abdalla, J.A. and Al-Tamimi, A.K. (2014), "Behavior of reinforced concrete beams strengthened with externally bonded hybrid fiber reinforced polymer systems", Mater. Des., 53, 972-982. https://doi.org/10.1016/j.matdes.2013.07.087.
  25. Hognestad, E., Hlanson, N.W. and McHenry, D. (1955), "Concrete stress distribution in ultimate strength design", J. Proc., 52(12), 455-480. https://doi.org/10.14359/11609.
  26. Huang, L., Zhang, S.S., Yu, T. and Wang, Z.Y. (2018), "Compressive behaviour of large rupture strain FRP-confined concrete-encased steel columns", Constr. Build. Mater., 183, 513-522. https://doi.org/10.1016/j.conbuildmat.2018.06.074.
  27. Ispir, M. (2015), "Monotonic and cyclic compression tests on concrete confined with PET-FRP", J. Compos. Constr., 19(1), 04014034. https://doi.org/10.1061/(asce)cc.1943-5614.0000490.
  28. Jiangtao, Y., Yichao, W., Kexu, H., Kequan, Y. and Jianzhuang, X. (2017), "The performance of near-surface mounted CFRP strengthened RC beam in fire", Fire Saf. J., 90, 86-94. https://doi.org/10.1016/j.firesaf.2017.04.031.
  29. Jiao, P., Soleimani, S., Xu, Q., Cai, L. and Wang, Y. (2017), "Effect of curing conditions on mode-II debonding between FRP and concrete: A prediction model", Comput. Concrete, 20, 635-643. https://doi.org/10.12989/cac.2017.20.6.635.
  30. Jirawattanasomkul, T., Dai, J.G., Zhang, D., Senda, M. and Ueda, T. (2014), "Experimental study on shear behavior of reinforced-concrete members fully wrapped with large rupture-strain FRP composites", J. Compos. Constr., 18(3), 1-12. https://doi.org/10.1061/(asce)cc.1943-5614.0000442.
  31. Jirawattanasomkul, T., Kongwang, N., Jongvivatsakul, P. and Likitlersuang, S. (2018), "Finite element modelling of flexural behaviour of geosynthetic cementitious composite mat (GCCM)", Compos. Part B: Eng., 154, 33-42. https://doi.org/10.1016/j.compositesb.2018.07.052.
  32. Jirawattanasomkul, T., Kongwang, N., Jongvivatsakul, P. and Likitlersuang, S. (2019), "Finite element analysis of tensile and puncture behaviours of geosynthetic cementitious composite mat (GCCM)", Compos. Part B: Eng., 165, 702-711. https://doi.org/10.1016/j.compositesb.2019.02.037.
  33. Jirawattanasomkul, T., Likitlersuang, S., Wuttiwannasak, N., Ueda, T., Zhang, D. and Shono, M. (2020), "Structural behaviour of pre-damaged reinforced concrete beams strengthened with natural fibre reinforced polymer composites", Compos. Struct., 244, 112309. https://doi.org/10.1016/j.compstruct.2020.112309.
  34. Jirawattanasomkul, T., Minakawa, H., Likitlersuang, S., Ueda, T., Dai, J.G., Wuttiwannasak, N. and Kongwang, N. (2021), "Use of water hyacinth waste to produce fibre-reinforced polymer composites for concrete confinement: Mechanical performance and environmental assessment", J. Clean. Prod., 292, 126041. https://doi.org/10.1016/j.jclepro.2021.126041.
  35. Jirawattanasomkul, T., Ueda, T., Likitlersuang, S., Zhang, D., Hanwiboonwat, N., Wuttiwannasak, N. and Horsangchai, K. (2019), "Effect of natural fibre reinforced polymers on confined compressive strength of concrete", Constr. Build. Mater., 223, 156-164. https://doi.org/10.1016/j.conbuildmat.2019.06.217.
  36. Jnaid, F. and Aboutaha, R. (2013), "Review of design parameters for FRP-RC members detailed according to ACI 440.1R-06", Comput. Concrete, 11(2), 105-121. https://doi.org/10.12989/cac.2013.11.2.105.
  37. Kadhim, A.M.H., Numan, H.A. and Ozakca, M. (2019), "Flexural strengthening and rehabilitation of reinforced concrete beam using BFRP composites: Finite element approach", Adv. Civil Eng., 2019, 1. https://doi.org/10.1155/2019/4981750.
  38. Kotynia, R., Abdel Baky, H., Neale, K.W. and Ebead, U.A. (2008), "Flexural strengthening of RC beams with externally bonded CFRP systems: Test results and 3D nonlinear FE analysis", 12(2), 190-201. https://doi.org/10.1061/ASCE1090-0268200812:2190.
  39. Liu, X. and Li, Y. (2019), "Static bearing capacity of partially corrosion-damaged reinforced concrete structures strengthened with PET FRP composites", Constr. Build. Mater., 211, 33-43. https://doi.org/10.1016/j.conbuildmat.2019.03.218.
  40. Lu, X.Z., Teng, J.G., Ye, L.P. and Jiang, J.J. (2005), "Bond-slip models for FRP sheets/plates bonded to concrete", Eng. Struct., 27(6), 920-937. https://doi.org/10.1016/j.engstruct.2005.01.014.
  41. Mhanna, H.H., Hawileh, R.A., Asce, M., Abuzaid, W., Naser, M.Z., Abdalla, J.A. and Asce, F. (2006), "Experimental investigation and modeling of the thermal effect on the mechanical properties of polyethylene-terephthalate FRP laminates", J. Mater. Civil Eng., 32(10), 04020296. https://doi.org/10.1061/(ASCE)MT.1943.
  42. Nakaba, K., Kanakubo, T., Furuta, T. and Yoshizawa, H. (2001), "Bond behavior between fiber-reinforced polymer laminates and concrete", Struct. J., 98(3), 359-367. https://doi.org/10.14359/10224.
  43. Naser, M., Hawileh, R., Abdalla, J.A. and Al-Tamimi, A. (2012), "Bond behavior of CFRP cured laminates: Experimental and numerical investigation", J. Eng. Mater. Technol., 134(2), 021002. https://doi.org/10.1115/1.4003565.
  44. Naser, M.Z., Hawileh, R.A. and Abdalla, J.A. (2019), "Fiber-reinforced polymer composites in strengthening reinforced concrete structures: A critical review", Eng. Struct., 198, 109542. https://doi.org/10.1016/j.engstruct.2019.109542.
  45. Omar, R. and Abuodeh, R.A.H.J.A.A. (2021), "Finite element modelling of aluminum alloy plated reinforced concrete beams", Comput. Concrete, 27(6), 585-596. https://doi.org/10.12989/cac.2021.27.6.585.
  46. Pimanmas, A. and Saleem, S. (2018), "Dilation characteristics of PET FRP-confined concrete", J. Compos. Constr., 22(3), 04018006. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000841.
  47. Rasheed, H.A., Abdalla, J., Hawileh, R. and Al-Tamimi, A.K. (2017), "Flexural behavior of reinforced concrete beams strengthened with externally bonded aluminum alloy plates", Eng. Struct., 147, 473-485. https://doi.org/10.1016/j.engstruct.2017.05.067.
  48. Salama, A.S.D., Hawileh, R.A. and Abdalla, J.A. (2019), "Performance of externally strengthened RC beams with side-bonded CFRP sheets", Compos. Struct., 212, 281-290. https://doi.org/10.1016/j.compstruct.2019.01.045.
  49. Saleem, S., Hussain, Q. and Pimanmas, A. (2017), "Compressive behavior of PET FRP-confined circular, square, and rectangular Concrete columns", J. Compos. Constr., 21(3), 04016097. https://doi.org/10.1061/(asce)cc.1943-5614.0000754.
  50. Saleem, S., Pimanmas, A. and Rattanapitikon, W. (2018), "Lateral response of PET FRP-confined concrete", Constr. Build. Mater., 159, 390-407. https://doi.org/10.1016/j.conbuildmat.2017.10.116.
  51. Shrestha, R., Smith, S.T. and Samali, B. (2013), "Finite element modelling of FRP-strengthened RC beam-column connections with ANSYS", Comput. Concrete, 11(1), 1-20. https://doi.org/10.12989/cac.2013.11.1.001.
  52. Willam, K.J. and Warnke, E.D. (1975), "Constitutive model for the triaxial behavior of concrete", International Association of Bridge and Structural Engineers, Seminar on Concrete Structure Subjected to Triaxial Stresses, Bergamo, Italy, May,
  53. Zhang, D., Wang, Q. and Dong, J. (2016), "Simulation study on CFRP strengthened reinforced concrete beam under four-point bending", Comput. Concrete, 17(3), 407-421. https://doi.org/10.12989/cac.2016.17.3.407.