DOI QR코드

DOI QR Code

에어컨 실외기 압축기 배기 배관계의 기기 기인 진동/유동 기인 진동의 방사소음에 대한 상대적 기여도 분석

Analysis of relative contribution of machinery-induced vibration/flow-induced vibration to noise radiation from compressor discharging piping system in air-conditioner outdoor unit

  • 투고 : 2023.12.26
  • 심사 : 2024.01.12
  • 발행 : 2024.01.31

초록

에어컨 실외기 내부의 압축기 진동 소음은 실외기에서 발생하는 소음의 주 원인으로 인식되고 있었다. 하지만, 압축기의 작동 속도가 증가함에 따라 압축기에 연결된 배관계에서의 냉매 유동 기인 진동에 의한 소음의 상대적 기여도가 증가하였다. 본 논문에서는 에어컨 압축기 배기 배관계에서의 유체 기인 소음을 수치적으로 예측할 수 있는 해석방법을 정립하였다. 이 단계에서, 해석 결과와 실험결과의 비교를 통해 해석의 신뢰성을 확인하였다. 추가적으로, 압축기 배기 배관계 방사 소음에 대하여 압축기 맥동음과 압축기 진동에 의한 소음의 영향을 주파수 대역별로 비교하였다. 압축기 진동에 의한 소음이 저주파수 대역에 기여함을 확인하였으며, 압축기 맥동음이 고주파수에서의 소음에 영향을 줌을 확인하였다.

Vibration of compressor in the air-conditioner outdoor unit have known to be main noise source radiated from outdoor unit. However, as the operating speed of compressor increase, the relative contribution of flow induced vibration and noise is also increase. In this paper, the numerical method was established to predict fluid-borne noise from compressor discharging pipe of air-conditioner outdoor unit. In this step, numerical result was compared to experimental one to verify numerical method. Additionally, the effects of pressure pulsation of compressor and compressor vibration into radiated noise were investigated in frequency domain. It was confirmed that the compressor vibration contributed to the low frequency band, while the pressure pulsation dose to the high frequency band.

키워드

과제정보

이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No.2020R1F1A1066701).

참고문헌

  1. C. Zhang, Y. Luo, L. Li, and J. Li, "Flow-induced noise prediction for 90° bend pipe by LES and FW-H hybrid method," Scientific Research and Essays, 9, 483-494 (2014).
  2. G. Kim, G. Ku, C. Cheong, W. Kang, and K. Kim, "Numerical investigation on reduction of valve flow noise in high pressure gas pipe using perforated plates," J. Acoust. Soc. Kr. 40, 55-63
  3. S. Kottapalli, "Numerical prediction of flow induced vibrations in nuclear reactors through pressure fluctuation modeling," (Master thesis, Delft University of Technology, 2016).
  4. S. Kottapalli, A. Hirschberg, V. Anantharaman, D. M. J. Smeulders, N. Wasterson, and G. Nakiboglu, "Hydrodynamic and acoustic pressure fluctuation in water pipes due to an orifice: comparison of measurements with Large Eddy Simulations," JSV. 529, 116882 (2022).
  5. K.-S. Kim, G.-R. Ku, S.-J. Lee, S.-G. Park, and C. Cheong, "Wavenumber-frequency an-alysis of internal aerodynamic noise in constriction-expansion pipe," Appl. Sci. 7, 1137-1152 (2017).
  6. G. Ku, S. Lee, C. Cheong, W. Kang, and K. Kim, "Development of high-fidelity numerical methodology based on wavenumber-frequency transform for quantifying internal aerodynamic noise in critical nozzle," Appl. Sci. 9, 2885-2899 (2019).
  7. G. Ku, S. Lee, K. Kim, and C. Cheong, "Numerical investigation into flow noise source of a convergentdivergent nozzle in high pressure pipe system using wavenumber-frequency analysis," J. Acoust. Soc. Kr. 36, 314-320 (2017).
  8. FreonTM Refrigerants, Refrigerant R410A-Transport Properties, The Chemours company FC, LLC. FreonTM (2019).
  9. T. Hieronymus, T. Lobsinger, and G. Brenner, "A combined CFD-FEM app-roach to predict fluid-borne vibrations and noise radiation of a rotary vane pump," Energies. 14, 1874-1896
  10. S. M. Park, S.-R. Ryu, C. Cheong, J. W. Kim, B. I. Park, Y. C. Ahn, and S. K. Oh, "Optimization of the orifice shape of cooling fan units for high flow rate and low-level noise in outdoor air conditioning units," Appl. Sci. 9, 5207 (2019).
  11. S.-Y. Ryu, C. Cheong, J. W. Kim, B. I. Park, and S. M. Park, "Numerical and experimental investigation into effects of winglet shape on flow and noise performances of axial-flow fans for outdoor unit of air conditioner," Int J Refrig. 150, 225-238 (2023).
  12. J.-H. Baek and W. J. Kim, "Vibration reduction in the outdoor unit panel of an air conditioner," Trans. Korean Soc. Noise Vib. Eng. 31, 24-29 (2021).