DOI QR코드

DOI QR Code

고속철도차량의 공력소음 측정 시험법 개발

Development of aerodynamic noise measurement method for high-speed trains

  • 투고 : 2023.12.06
  • 심사 : 2024.01.15
  • 발행 : 2024.01.31

초록

고속으로 주행하는 열차의 주변 유동에 의해 발생하는 공력소음은 실외소음과 실내소음에 모두 영향을 미친다. 본 연구는 열차표면의 압력섭동데이터를 통해 공력소음을 측정하고 실내소음에 영향을 미치는 성분을 정량적으로 평가하기 위한 시험법을 개발하고 분석하는 것이다. 실내소음을 정확히 평가하기 위해서는 취득한 표면 압력섭동 데이터에서 혼재되어 있는 압축성 압력섭동과 비압축성 압력섭동을 각각 분리하여 평가하는 것이 중요하다. 이는 두 압력섭동의 소음 전달 특성이 다르기 때문이다. 먼저 마이크로폰의 설치 길이와 간격을 결정하여 표면 압력섭동 데이터를 취득하였고, 파수-주파수 분석을 수행하여 비압축성 압력섭동과 압축성 압력섭동을 분리하여 음압 스펙트럼을 취득하였다. 마지막으로 전두부와 후두부에서 측정한 시험 결과값을 비교한 결과 전두부 표면 압력섭동이 후두부 압력섭동보다 더 큼을 확인하였다.

Aerodynamic noise generated by the surrounding flow of a train traveling at high speed affects both outdoor and indoor noise. This study's goal is to develop a test method to measure and quantitatively evaluate aerodynamic noise through pressure perturbation data on the train surface. To accurately evaluate aerodynamic noise, it is important to separate and evaluate the compressive and incompressible pressure fluctuations mixed in the acquired surface pressure fluctuation data. This is because the noise transmission characteristics of the two pressure fluctuations are different. First, the installation length and interval of the microphone were determined to acquire surface pressure fluctuation data, and wavenumber-frequency analysis was performed to separate incompressible pressure fluctuation and compressible pressure fluctuation to obtain a sound pressure level spectrum. Finally, as a result of comparing the test results measured in the train head and trail, It was confirmed that the pressure fluctuation on the train head surface was greater than that on the tail.

키워드

과제정보

이 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었습니다(RS-2022-0014-3396).

참고문헌

  1. C. Mellet, F. Letourneaux, F. Poisson, and C. Talotte, "High speed train noise emission: Latest investigation of the aerodynamic/rolling noise contribution," J. Sound Vib. 293, 535-546 (2006).
  2. D. J. Thompson, M. G. Smith, and F. Coudret, "Application of a component-based approach to modelling the aerodynamic noise from high-speed trains," Proc. 10th Int. Workshop on Railway Noise, 427-435 (2012).
  3. D. J. Thompson, E. L. Iglesias, X. Liu, J. Zhu, and Z. Hu, "Recent developments in the prediction and control of aerodynamic noise from high-speed trains," Int. J. Rail Transp. 3, 119-150 (2015).
  4. Y. Guo, "Empirical prediction of aircraft landing gear noise," NASA Tech. Rep., CR-2005-213780. Chap. 4, 2005.
  5. N. Paradot, E. Masson, F. Poisson, R. Gregoire, E. Guilloteau, H. Touil, and P. Sagaut, "Aero-acoustic methods for high-speed train noise prediction," Proc. WCRR, 1-8 (2008).
  6. H.-H. Yu, J.-C. Li, and H.-Q. Zhang, "On aerodynamic noises radiated by the pantograph system of highspeed trains." Acta Mech Sin ACTA MECH SINICAPRC. 29, 399-410 (2013).
  7. J. Zhu, Aerodynamic noise of high-speed train bogies, (Ph. D. thesis, University of Southampton, 2015).
  8. S. J. Lee, C. Cheong, B. Kim, and J. Kim, "Comparative analysis of surface pressure fluctuations of high-speed train running in open-field and tunnel using LES and wavenumber-frequency analysis," Appl. Sci. 11, 11702 (2021).
  9. J. Zhang, X. Xiao, X. Sheng, C. Zhang, R. Wang, and X. Jin, "SEA and contribution analysis for interior noise of a high speed train," Appl. Acoust. 112, 158-170 (2016).
  10. J. Zhang, X.-B. Xiao, X.-Z. Sheng, R. Fu, D. Yao, and X.-S. Jin, "Characteristics of interior noise of a Chinese high-speed train under a variety of conditions," J. Zhejiang Univ.: Sci. A. 18, 617-630 (2017).