DOI QR코드

DOI QR Code

양상태-단상태 변환 기반 잠수함 양상태 표적강도 해석

Submarine bistatic target strength analysis based on bistatic-to-monostatic conversion

  • 김국현 (동명대학교 해양모빌리티학과) ;
  • 박성주 (동명대학교 해양모빌리티학과) ;
  • 이근화 (세종대학교 국방시스템공학과) ;
  • 조대승 (부산대학교 조선해양공학과)
  • 투고 : 2023.11.07
  • 심사 : 2023.12.20
  • 발행 : 2024.01.31

초록

본 논문에서는 잠수함 양상태 표적강도 해석을 위한 양상태-단상태 변환 기법을 제안하였다. 이 기법은 송신 음원이 수중 표적면에 의해 산란된 후 수신자에 도달하는 음파 전달 경로 길이를 산정하고, 이에 상응하는 가상 산란면을 생성함으로써, 수중 표적의 표적강도 문제를 양상태에서 단상태로 변환하는 방법이다. 변환된 단상태 표적강도 문제는 기 정립된 단상태 표적강도 수치 해석 기법을 활용하여 양상태 표적강도를 평가한다. 표적강도 표준모델로 활용되고 있는 BeTTSi에 대한 양상태 표적강도 해석을 수행하였으며, 그 결과는 경계 요소법과 키르히호프 근사에 의한 해석 결과와 비교하여 제안된 해석 기법의 신뢰성과 잠수함 표적강도 평가 도구로서의 실무 활용성을 확인하였다.

This paper presents a bistatic to monostatic conversion technique to analyze the bistatic target strength of submarines. The technique involves determining the transmission path length of acoustic waves, which are emitted from a source, scattered off an underwater target, and eventually received by a receiver. By generating a corresponding virtual scattering surface, this method effectively transforms the target strength analysis problem from bistatic to monostatic. The converted monostatic target strength problem can be assessed using a well-established monostatic numerical methods. The bistatic target strength analysis for Benchmark Target Strength Simulation (BeTTSi), a widely used target strength model were performed. The results were compared with those calculated by boundary element methods and Kirchhoff approximation, and confirmed the validity and the practical applicability of the proposed analysis technique for evaluating submarine target strength.

키워드

과제정보

이 과제는 부산대학교 기본연구지원사업(2년)에 의하여 연구되었음.

참고문헌

  1. R. J. Urick, Principles of Underwater Sound (Peninsular Publishing, Los Altos Hills, 1983), pp. 331-341.
  2. G. D. Tyler, "The emergency of low-frequency active acoustics for as a critical antisubmarine warfare technology," John Hopkins APL Technical Digest, 13, 145-159 (1992).
  3. K.-H. Kim, D.-S. Cho, and J.-C. Kim, "High frequency acoustic scattering analysis of underwater target" (in Korean), J. Soc. Nav. Archit. Korea, 42, 528-533 (2005).
  4. K. Kim, D. Cho, and W. Seong, "Simulation of time-domain acoustic wave signals backscattered from underwater targets" (in Korean), J. Acoust. Soc. of Korea, 27, 140-148 (2008).
  5. Y.-H. Choi, K.-C. Shin, J.-S. You, J.-S. Kim, W.-H. Joo, Y.-H. Kim, J.-H. Park, S.-M. Choi, and W.-S. Kim, "Numerical modeling and experimental verification for target strength of submerged objects" (in Korean), J. Ocean Eng. Technol. 19, 64-70 (2005).
  6. H. G. Schneider, R. Berg, and L. Gilroy, "Acoustic scattering by a submarine: results from a benchmark target strength simulation workshop," Proc. 10th Int. Congr. Sound Vib, 1-8 (2003).
  7. M. Nihof, L Fillinger, L. Gilroy, J. Ehrlich, and I. Schafer, "BeTSSi II : submarine target strength modelin workshop," Proc. 4th UACE, 377-384 (2017).
  8. H. Cox, Fundamentals of bistatic active sonar. Underwater acoustic data processing, Springer Sci. Rev. 161, 3-24 (1989).
  9. D. M. Fromm, J. P. Crocket, and L. B. Palmer, "BiRASP - The bistatic range-dependent active system performance prediction model," NRL, 1996.
  10. M. Swift, J. L. Riley, S. Lourey, and L. Booth, "An review of the multistatic sonar program in australia," Proc. 5th ISSPA, 1 (1999).
  11. Y.-S. Choo, S.-H. Byun, Y. Choo, and G. Choi, "Comparison of target classification accuracy according to the aspect angle and the bistatic angle in bistatic sonar" (in Korean), J. Acoust. Soc. Kr. 38, 511-521
  12. Y. H. Ji, H. S. Bae, G.-H. Byun, J. S. Kim, W.-S. Kim, and S. Park, "Investigation of target echoes in multi-static SONAR system - part II : numerical modeling with experimental verification" (in Korean), J. of Ocean Eng. & Tech. 28, 440-451(2014).
  13. C. Liu, M. Zhang, and W. Lin, "Calculation of bistatic scattering from underwater target with physical acoustic method," Procedia Eng. 15, 2561-2565 (2011). ps://doi.org/10.1016/j.proeng.2011.08.481
  14. D. Klement, J. Preissner, and V. Stein, "Special problems in applying the physical optics method for backscatter computation of complicated objects," IEEE Trans. Ant. Prop. 36, 228-237(1988).
  15. Acoustics Module User's Guide, COMSOL Multiphysics v. 6.1 COMSOL AB, Stockholm, Sweden (2022).