DOI QR코드

DOI QR Code

Current Status of Water Electrolysis Technology and Large-scale Demonstration Projects in Korea and Overseas

국내외 수전해 기술 및 대규모 실증 프로젝트 진행 현황

  • JONGMIN BAEK (Plant Engineering Center, Institute for Advanced Engineering) ;
  • SU HYUN KIM (Plant Engineering Center, Institute for Advanced Engineering)
  • 백종민 (고등기술연구원 플랜트엔지니어링센터) ;
  • 김수현 (고등기술연구원 플랜트엔지니어링센터)
  • Received : 2023.11.08
  • Accepted : 2024.02.06
  • Published : 2024.02.28

Abstract

Global efforts continue with the goal of transition to a "carbon neutral (net zero)" society with zero carbon emissions by 2050. For this purpose, the technology of water electrolysis is being developed, which can store electricity generated from renewable energies in large quantities and over a long period of time as hydrogen. Recently, various research and large-scale projects on 'green hydrogen', which has no carbon emissions, are being conducted. In this paper, a comparison of water electrolysis technologies was carried out and, based on data provided by the International Energy Agency (IEA), large-scale water electrolysis demonstration projects were analyzed by classifying them by technology, power supply, country and end user. It is expected that through the analysis of large-scale water electrolysis demonstration projects, research directions and road maps can be provided for the development/implementation of commercial projects in the future.

Keywords

Acknowledgement

본 연구는 산업통상자원부와 한국에너지기술평가원의 그린수소 생산 및 저장 시스템 기술개발(R&D) 사업(과제번호: 20218801010030)의 지원을 받아 수행되었습니다.

References

  1. C. Wulf, P. Zapp, and A. Schreiber, "Review of power-to-X demonstration projects in Europe", Frontiers in Energy Research, Vol. 8, 2020, pp. 1-12, doi: https://doi.org/10.3389/fenrg.2020.00191. 
  2. M. Thema, F. Bauer, and M. Sterner, "Power-to-gas: electrolysis and methanation status review", Renewable and Sustainable Energy Reviews, Vol. 112, 2019, pp. 775-787, doi: https://doi.org/10.1016/j.rser.2019.06.030. 
  3. M. Ozturk and I. Dincer, "A comprehensive review on power-to-gas with hydrogen options for cleaner applications", International Journal of Hydrogen Energy, Vol. 46, No. 62, 2021, pp. 31511-31522, doi: https://doi.org/10.1016/j.ijhydene.2021.07.066. 
  4. F. He, S. Tong, Z. Luo, H. Ding, Z. Cheng, C. Li, and Z. Qi, "Accelerating net-zero carbon emissions by electrochemical reduction of carbon dioxide", Journal of Energy Chemistry, Vol. 79, 2023, pp. 398-409, doi: https://doi.org/10.1016/j.jechem.2023.01.020. 
  5. A. Buttler and H. Spliethoff, "Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: a review", Renewable and Sustainable Energy Reviews, Vol. 82, Pt. 3, 2018, pp. 2440-2454, doi: https://doi.org/10.1016/j.rser.2017.09.003. 
  6. J. Seo, S. Lee, C. Lee, J. Lee, M. Kim, S. Kim, Y. Choi, and H. Cho, "Development of water electrolysis technology for green hydrogen production", News & Information for Chemical Engineers, Vol. 40, No. 3, 2022, pp. 254-270. Retrieved from https://kiss.kstudy.com/Detail/Ar?key=3949657. 
  7. International Renewable Energy Agency (IRENA), "Green hydrogen cost reduction: scaling up electrolysers to meet the 1.5℃ climate goal", IRENA, 2020. Retrieved from https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Dec/IRENA_Green_hydrogen_cost_2020.pdf. 
  8. K. Roh, Y. Kim, H. Jeon, W. Kim, H. Ko, K. S. Kang, and S. U. Jeong, "Analyses on techno-economic aspects and green hydrogen production capability of MW-scale low-temperature water electrolyzers in Jeju Island, South Korea", Journal of Hydrogen and New Energy, Vol. 34, No. 3, 2023, pp. 235-245, doi: https://doi.org/10.7316/JHNE.2023.34.3.235. 
  9. H. Hwang, Y. Lee, N. Kwon, S. Kim, Y. Yoo, and H. Lee, "Economic feasibility analysis of an overseas green hydrogen supply chain", Journal of Hydrogen and New Energy, Vol. 33, No. 6, 2022, pp. 616-622, doi: https://doi.org/10.7316/KHNES.2022.33.6.616. 
  10. S. Y. Jang, C. H. Ryu, and G. J. Hwang, "High temperature characteristics of commercially available anion exchange membrane for alkaline water electrolysis", Journal of Hydrogen and New Energy, Vol. 33, No. 4, 2022, pp. 330-336, doi: https://doi.org/10.7316/KHNES.2022.33.4.330. 
  11. International Energy Agency (IEA), "World energy outlook 2022 free dataset", IEA, 2023. Retrieved from https://www.iea.org/data-and-statistics/data-product/world-energy-outlook-2022-extended-dataset. 
  12. E. Katz, "Electrochemical contributions: William Nicholson (1753-1815)", Electrochemical Science Advances, Vol. 1, No. 2021, pp. e2160003, doi: https://doi.org/10.1002/elsa.202160003. 
  13. A. L. Santos, M. J. Cebola, and D. M. F. Santos, "Towards the hydrogen economy-a review of the parameters that influence the efficiency of alkaline water electrolyzers", Energies, Vol. 14, No. 11, 2021, pp. 3193, doi: https://doi.org/10.3390/en14113193. 
  14. J. Brauns and T. Turek, "Alkaline water electrolysis powered by renewable energy: a review", Processes, Vol. 8, No. 2, 2020, pp. 248, doi: https://doi.org/10.3390/pr8020248. 
  15. K. E. Ayers, E. B. Anderson, C. Capuano, B. Carter, L. Dalton, G. Hanlon, J. Manco, and M. Niedzwiecki, "Research advances towards low cost, high efficiency PEM electrolysis", ECS Transactions, Vol. 33, No. 1, 2010, pp. 3, doi: https://doi.org/10.1149/1.3484496. 
  16. M. N. I. Salehmin, T. Husaini, J. Goh, and A. B. Sulong, "High-pressure PEM water electrolyser: a review on challenges and mitigation strategies towards green and low-cost hydrogen production", Energy Conversion and Management, Vol. 268, 2022, pp. 115985, doi: https://doi.org/10.1016/j.enconman.2022.115985. 
  17. S. S. Kumar and H. Lim, "An overview of water electrolysis technologies for green hydrogen production", Energy Reports, Vol. 8, 2022, pp. 13793-13813, doi: https://doi.org/10.1016/j.egyr.2022.10.127. 
  18. E. Zoulias, E. Varkaraki, N. Lymberopoulos, C. N. Christodoulou, and G. N. Karagiorgis, "A review on water electrolysis", Turkish Journal of Science and Technology, Vol. 4, No. 2, 2004, pp. 41-71. Retrieved from http://www.cres.gr/kape/publications/papers/dimosieyseis/ydrogen/A%20REVIEW%20ON%20WATER%20ELECTROLYSIS.pdf. 
  19. A. P. R. A. Ferreira, R. C. P. Oliveira, M. M. Mateus, and D. M. F. Santos, "A review of the use of electrolytic cells for energy and environmental applications", Energies, Vol. 16, No. 4, 2023, pp. 1593, doi: https://doi.org/10.3390/en16041593. 
  20. International Renewable Energy Agency (IRENA), "Global renewables outlook: energy transformation 2050", IRENA, 2020. Retrieved from https://www.irena.org/publications/2020/Apr/Global-Renewables-Outlook-2020. 
  21. K. Zeng and D. Zhang, "Evaluating the effect of surface modifications on Ni based electrodes for alkaline water electrolysis", Fuel, Vol. 116, 2014, pp. 692-698, doi: https://doi.org/10.1016/j.fuel.2013.08.070. 
  22. I. D. Unachukwu, V. Vibhu, J. Uecker, I. C. Vinke, R. A. Eic-hel, and L. G. J. (Bert) de Haart, "Comparison of the electr-ochemical and degradation behaviour of Ni-YSZ and Ni-GDC electrodes under steam, Co- and CO2 electrolysis", ECS Transactions, Vol. 111, No. 6, 2023, pp. 1445, doi: https://doi.org/10.1149/11106.1445ecst. 
  23. L. A. King, M. A. Hubert, C. Capuano, J. Manco, N. Danilovic, E. Valle, T. R. Hellstern, K. Ayers, and T. F. Jaramillo, "A non-precious metal hydrogen catalyst in a commercial polymer electrolyte membrane electrolyser", Nature Nanotechnology, Vol. 14, 2019, pp. 1071-1074, doi: https://doi.org/10.1038/s41565-019-0550-7. 
  24. A. A. H. Tajuddin, G. Elumalai, Z. Xi, K. Hu, S. Jeong, K. Nagasawa, J. Fujita, Y. Sone, and Y. Ito, "Corrosion-resistant non-noble metal electrodes for PEM-type water electrolyzer", In-t ernational Journal of Hydrogen Energy, Vol. 46, No. 78, 2 021, pp. 38603-38611, doi: https://doi.org/10.1016/j.ijhydene.2021.09.116. 
  25. D. Kim, K. T. Bae, K. J. Kim, H. N. Im, S. Jang, S. Oh, S. W. Lee, T. H. Shin, and K. T. Lee, "High-performance protonic ceramic electrochemical cells", ACS Energy Letters, Vol. 7, No. 7, 2022, pp. 2393-2400, doi: https://doi.org/10.1021/acsenergylett.2c01370. 
  26. M. Choi, C. B. Lee, J. Baek, S. Bang, K. Hong, J. Hong, K. Kim, and W. Lee, "Engineering the surface basicity of heterogeneous catalyst for high Co2 methanation of protonic ceramic electrolysis cells", SSRN, 2023, doi: http://dx.doi.org/10.2139/ssrn.4364666. 
  27. E. Yoon, "Localization of water electrolysis technology... promoting carbon neutrality and green growth", Watermaeil, 2023. Retrieved from http://www.watermaeil.com/news/articleView.html?idxno=7147. 
  28. J. Lee, "Establish a commercial hydro electrolysis hydrogen production base", Monthly Hydrogen Economy, 2022. Retrieved from https://www.h2news.kr/news/articleView.html?idxno=10066. 
  29. H. Kim, "Kceracell, going to localize high-temperature water electrolysis technology", igas Journal, 2021. Retrieved from http://m.igasnet.com/news/articleView.html?idxno=18034. 
  30. J. Lee, " Hydrogen economy, technology and products attracting attention - ② 'PEM water electrolysis technology' of AcroLabs", Monthly Hydrogen Economy, 2019. Retrieved from http://www.h2news.kr/news/articleView.html?idxno=7330. 
  31. J. Sung, "[Hydrogen industry NEW TREND] ① Development of ammonia, water electrolysis, and liquefied hydrogen technology 'fightening'", Monthly Hydrogen Economy, 2023. Retrieved from http://www.h2news.kr/news/articleView.html?idxno=11360. 
  32. Sunfire, "Hydrogen: the renewable feedstock and energy carrier", Sunfire, 2023. Retrieved from https://www.sunfire.de/en/hydrogen. 
  33. Aqualyzer, "Aqualyzer: Large-scale alkaline water electrolyzer for producing hydrogen from renewable energy", Aqualyzer, 2023. Retrieved from https://ak-green-solution.com/en/. 
  34. Verde Hydrogen, "Verde Hydrogen containerized electrolyzer solution", Verde Hydrogen, 2023. Retrieved from https://verdehydrogen.com/verde-100-electrolyser.html. 
  35. thyssenkrupp nucera, "Green hydrogen solutions", thyssenkrupp nucera, 2024. Retrieved from https://thyssenkrupp-nucera.com/green-hydrogen-solutions/. 
  36. John Cockerill, "Electrolysers: John Cockerill Hydrogen's pressurized electrolyser solutions", John Cockerill, 2022. Retrieved from https://hydrogen.johncockerill.com/en/products/electrolysers/. 
  37. Nel, "Atmospheric alkaline electrolyser", Nel, 2023. Retrie-ved from https://nelhydrogen.com/product/atmospheric-alkaline-electrolyser-a-series/. 
  38. Azo Materials, "Alkaline hydrogen generators: 103 to 4,000 Nm3/h", Azo Materials, 2023. Retrieved from https://www.azom.com/equipment-details.aspx?EquipID=7488. 
  39. McPhy, "McLyzer range: 200 to 3200 Nm3/h at 30 bar", McPhy, 2023. Retrieved from https://mcphy.com/en/equipment-services/electrolyzers/large/?cn-reloaded=1. 
  40. H Green Hydrogen Systems, "Hyprovide® X-series", H Green Hydrogen Systems, 2023. Retrieved from https://www.greenhydrogensystems.com/electrolysers/hyprovide-x-series-6mw-modular-electrolyser. 
  41. Cummins, "Hydrogen: the next generation", Cummins, 2021. Retrieved from https://www.cummins.com/sites/default/files/2021-08/cummins-hydrogen-generation-brochure-20210603.pdf. 
  42. Nel, "PEM electrolyser", Nel, 2023. Retrieved from https://nelhydrogen.com/product/m-series-electrolyser/. 
  43. Plug, "Generate green hydrogen through PEM water electrolysis", Plug, 2023. Retrieved from https://www.plugpower.com/hydrogen/electrolyzer-hydrogen/. 
  44. H-TEC Systems, "H-TEC PEM electrolyzer modular hydrogen platform", H-TEC Systems, 2023. Retrieved from https://www.h-tec.com/en/products/detail/mhp-series/mhp-product. 
  45. Siemens Energy, "Green hydrogen production: discover our electrolyzer and large-scale hydrogen solutions for sustainable energy systems", Siemens Energy, 2024. Retrieved from https://www.siemens-energy.com/global/en/home/products-services/product-offerings/hydrogen-solutions.html. 
  46. Elogen, "Turnkey containerised electrolysers", Elogen, 2021. Retrieved from https://elogenh2.com/en/our-products/electrolyseurs-containerises/. 
  47. ITM Power, "Poseidon", ITM Power, 2023. Retrieved from https://itm-power.com/products/poseidon. 
  48. Sunfire, "Hydrogen: the renewable feedstock and energy carrier", Sunfire, 2023. Retrieved from https://www.sunfire.de/en/hydrogen. 
  49. Bloom Energy, "The world's largest and most efficient solid oxide electrolyzer", Bloom Energy, 2021. Retrieved from https://www.bloomenergy.com/bloomelectrolyzer/. 
  50. K. Ross, "Ceres Power to trial solid oxide electrolysis tech with Linde and Bosch", Power Engineering International, 2023. Retrieved from https://www.powerengineeringint.com/world-regions/europe/ceres-power-to-trial-solid-oxide-electrolysis-tech-with-linde-and-bosch/. 
  51. Enapter, "AEM electrolyser EL 4: jumpstart your green hy-d rogen production", Enapter, 2023. Retrieved from https://www.enapter.com/aem-electrolysers/aem-electrolyser-el-4. 
  52. thyssenkrupp, "One of the largest green hydrogen projects in the world: thyssenkrupp signs contract to install over 2GW electrolysis plant for Air Products in NEOM", thyssenkru-pp, 2021. Retrieved from https://www.thyssenkrupp.com/en/newsroom/press-releases/pressdetailpage/one-of-the-largest-green-hydrogen-projects-in-the-world%E2%80%94thyssenkrupp-signs-contract-to-install-over-2gw-electrol ysis-plant-for-air-products-in-neom-124584. 
  53. Plug Power, "Plug Lands 1 GW electrolyzer order with H2 energy Europe", Plug Power, 2022. Retrieved from https://www.ir.plugpower.com/press-releases/news-details/2022/Plug-Lands-1-GW-Electrolyzer-Order-with-H2-Energy-Europe/default.aspx. 
  54. HyDeal, "HyDeal ambition", HyDeal, 2020. Retrieved from https://www.hydeal.com/hydeal-ambition. 
  55. J. Lillis, "Kazakhstan: oil-rich west to become green hydrogen hub", Eurasianet, 2022. Retrieved from https://eurasianet.org/kazakhstan-oil-rich-west-to-become-green-hydrogen-hub. 
  56. L. Paddison, "Oman plans to build world's largest green hydrogen plant", The Guardian, 2021. Retrieved from https://www.theguardian.com/world/2021/may/27/oman-plans-to-build-worlds-largest-green-hydrogen-plant. 
  57. P. Wanjala, "Top 5 low carbon energy projects in Mauritania, ongoing and incoming", Africa Energy Portal, 2022. Retrieved from https://africa-energy-portal.org/news/top-5-low-carbon-energy-projects-mauritania-ongoing-and-incoming. 
  58. Chariot, "Green hydrogen", Chariot, 2023. Retrieved from https://chariotenergygroup.com/operations/green-hydrogen/. 
  59. HyResource, "Desert Bloom Hydrogen (archived)", HyResource, 2024. Retrieved from https://research.csiro.au/hyresource/desert-bloom-hydrogen/. 
  60. S. Matalucci, "The hydrogen stream: Europe's largest green hydrogen project takes shape", pv magazine, 2022. Retrieved from https://www.pv-magazine.com/2022/02/18/the-hydrogen-stream-europes-largest-green-hydrogen-project-takes-shape/. 
  61. RWE, "NortH2: a green hydrogen hub in Northwest Europe", RWE, 2020. Retrieved from https://www.rwe.com/en/research-and-development/hydrogen-projects/north2/. 
  62. equinor, "Equinor joins Europe's biggest green hydrogen project, the NortH2-project", equinor, 2020. Retrieved from https://www.equinor.com/news/archive/20201207-hydrogen-project-north2. 
  63. Hydrogen Island, "Hydrogen Island: an island in the North Sea dedicated to green hydrogen production", Hydrogen Island, 2022. Retrieved from https://hydrogenisland.dk/en. 
  64. H2V, "H2V is developing gigafactories for the production of green hydrogen in France and Europe", H2V, 2023. Retrieved from https://h2v.net/. 
  65. M. Boo, "Jeju Energy Corporation passes 3.3 MW green hydrogen production plant completion inspection and best safety management for operation of production facilities", J eju Energy Corporation, 2023. Retrieved from https://www.jejuenergy.or.kr/index.php/contents/notify/press?act=view&seq=2899. 
  66. Jeonnam Technopark, "Jeonnam Technopark selects a public offering project to build a Yeonggwang Green Hydrogen Performance Test Center", Korea Technopark Association, 2021. Retrieved from http://www.technopark.kr/newsnissue/150510. 
  67. H. Kim, "Laying the foundation for the 'building of a green hydrogen production system' in Yeonggwang-gun", Pressian, 2021. Retrieved from https://www.pressian.com/pages/articles/2021120716120955403. 
  68. S. Park, "Production demonstration of 12.5 MW class green hydrogen production in Jeju Island is launched in earnest", Monthly Hydrogen Economy, 2022. Retrieved from http://www.h2news.kr/news/articleView.html?idxno=10341. 
  69. B. Yoon, "Korea's first commercialized water electrolysis project launched in earnest... operated in May 2025", Electimes, 2023. Retrieved from https://www.electimes.com/news/articleView.html?idxno=320475. 
  70. S. Park, "Green hydrogen production base will be built in Pyeongchang, Gangwon Province", Monthly Hydrogen Economy, 2022. Retrieved from http://www.h2news.kr/news/articleView.html?idxno=10278. 
  71. I. Jeon, "The Ministry of Commerce, Industry and Energy selected the Donghae City Consortium for the project to build a clean hydrogen production base", Daily Kangwon-do People, 2023. Retrived from http://www.kado.net/news/articleView.html?idxno=1201015. 
  72. J. Sung, "Hyundai ENG to build a 'hydrogen production base based on water electrolysis' in Boryeong, Chungcheongnam-do", NewDaily Economy, 2023. Retrieved from https://biz.newdaily.co.kr/site/data/html/2023/08/29/2023082900151.html. 
  73. Siemens Energy, "PEM electrolyser technology: flexible, efficient and scalable", Siemens Energy, 2021. Retrieved from https://www.energyforum.in/fileadmin/user_upload/india/media_elements/Presentations/20210714_h2_large/Siemens_Energy.pdf. 
  74. Y. Fujita, "Asahi Kasei's activities for green hydrogen production", NEDO, 2020. Retrieved from https://www.nedo.go.jp/content/100939725.pdf. 
  75. M. R. Kraglund, M. Carmo, G. Schiller, S. A. Ansar, D. Aili, E. Christensen, and J. O. Jensen, "Ion-solvating membranes as a new approach towards high rate alkaline electrolyzers", Energy & Environmental Science, Vol. 12, No. 11, 2019, pp. 3313-3318, doi: https://doi.org/10.1039/C9EE00832B.