DOI QR코드

DOI QR Code

Study on Ni-based Bead Catalyst for Catalytic Thermal Decomposition of Light Hydrocarbons

경질 탄화수소 촉매 열분해를 위한 Ni 기반 구슬 촉매에 대한 연구

  • JINHYEOK WOO (Department of Chemical Engineering, Kyungpook National University) ;
  • JUEON KIM (Department of Chemical Engineering, Kyungpook National University) ;
  • TAEYOUNG KIM (Research Institute of Advanced Energy Technology, Kyungpook National University) ;
  • SOOCHOOL LEE (Research Institute of Advanced Energy Technology, Kyungpook National University) ;
  • JAECHANG KIM (Department of Chemical Engineering, Kyungpook National University)
  • 우진혁 (경북대학교 화학공학과) ;
  • 김주언 (경북대학교 화학공학과) ;
  • 김태영 (경북대학교 차세대에너지기술연구소) ;
  • 이수출 (경북대학교 차세대에너지기술연구소) ;
  • 김재창 (경북대학교 화학공학과)
  • Received : 2024.01.08
  • Accepted : 2024.02.07
  • Published : 2024.02.28

Abstract

In this study, we researched Ni-based bead catalysts for the catalytic thermal decomposition of light hydrocarbons. A Ni-based bead-type catalyst was prepared, and catalytic thermal decomposition performance of light hydrocarbons was evaluated. The 30Ni/Al2O3 catalyst exhibited the most superior performance, with the presence of both fibrous and carbon black forms on the catalyst surface. Catalytic performance was evaluated for particles sized between 150-250 and 500 ㎛, with excellent catalytic thermal decomposition properties in the 150-250 ㎛ range. After the reaction, carbon removal through collision between catalysts in the fluidized bed was observed. It was confirmed that as the particle size increases, the amount of carbon removed increases.

Keywords

Acknowledgement

이 논문은 2021학년도 경북대학교 연구년 교수 연구비에 의하여 연구되었음.

References

  1. R. Geyer, J. R. Jambeck, and K. L. Law, "Production, use, and fate of all plastics ever made", Science Advances, Vol. 3, No. 7, 2017, pp. e1700782, doi: https://doi.org/10.1126/sciadv.1700782.
  2. T. J. Kang, Y. J. Lee, H. S. Kim, N. K. Park, S. C. Lee, B. C. Choi, D. M. Jeon, and S. H. Kang, "Analysis of domestic and international policies and market trends to promote a circular economy based on waste plastics", Journal of Energy&Climate Change, Vol. 18, No. 2, 2023, pp. 205-235, doi: https://doi.org/10.22728/JECC.2023.18.2.205.
  3. J. Huang, A. Veksha, W. P. Chan, A. Giannis, and G. Lisak, "Chemical recycling of plastic waste for sustainable material management: a prospective review on catalysts and processes", Renewable and Sustainable Energy Reviews, Vol. 154, 2022, pp. 111866, doi: https://doi.org/10.1016/j.rser.2021.111866.
  4. C. Palmer, E. Bunyan, J. Gelinas, M. J. Gordon, H. Metiu, and E. W. McFarland, "CO2-free hydrogen production by catalytic pyrolysis of hydrocarbon feedstocks in molten Ni-Bi", Energy & Fuels, Vol. 34, No. 12, 2020, pp. 16073-16080, doi:https://doi.org/10.1021/acs.energyfuels.0c03080.
  5. M. J. Liu, G. Wang, S. N. Xu, T. R. Zheng, Z. D. Zhang, and S. B. He, "Reaction characteristics of maximizing light olefins and decreasing methane in C5 hydrocarbons catalytic pyrolysis", Petroleum Science, Vol. 20, No. 3, 2023, pp. 1909-1921, doi: https://doi.org/10.1016/j.petsci.2022.11.026.
  6. D. Lee, Y. Kim, and K. Ahn, "Analysis of methane conversion rate and selectivity of methane pyrolysis reaction in ceramic tube according to temperature and reaction time", Journal of Hydrogen and New Energy, Vol. 33, No. 1, 2022, pp. 1-7, doi: https://doi.org/10.7316/KHNES.2022.33.1.1.
  7. J. Woo, T. Kim, J. E. Kim, B. Cho, S. Jung, S. Park, S. Lee, and J. Kim "Ni catalyst properties for ammonia reforming: comparison of Ni content and space velocity", Journal of Hydrogen and New Energy, Vol. 32, No. 6, 2021, pp. 464-469, doi: https://doi.org/10.7316/KHNES.2021.32.6.464.
  8. S. H. Kim, J. Kim, and H. Y. Shin, "Exploring strategies for implementing hydrogen society based on psychological att-itudes towards hydrogen fuel: focused on risk perception, familiarity and acceptability", Journal of Hydrogen and New Energy, Vol. 33, No. 4, 2022, pp. 267-283, doi:https://doi.org/10.7316/KHNES.2022.33.4.267.
  9. I. W. Wang, D. A. Kutteri, B. Gao, H. Tian, and J. Hu, "Methane pyrolysis for carbon nanotubes and COx-free H2 over transition-metal catalysts", Energy & Fuels, Vol. 33, No. 1, 2019, pp. 197-205, doi: https://doi.org/10.1021/acs.energyfuels.8b03502.
  10. S. H. Yoon, N. K. Park, T. J. Lee, K. J. Yoon, and G. Y. Han, "Hydrogen production by thermocatalytic decomposition of butane over a carbon black catalyst", Catalysis Today, Vol. 146, No. 1-2, 2009, pp. 202-208, doi: https://doi.org/10.1016/j.cattod.2009.04.006.
  11. J. W. Chew, A. Cahyadi, C. M. Hrenya, R. Karri, and R. A. Cocco, "Review of entrainment correlations in gas-solid fluidization", Chemical Engineering Journal, Vol. 260, 2015, pp. 152-171, doi: https://doi.org/10.1016/j.cej.2014.08.086.