DOI QR코드

DOI QR Code

Aging Mechanisms of Lithium-ion Batteries

  • Jangwhan Seok (Department of Energy Science, Sungkyunkwan University) ;
  • Wontae Lee (Department of Energy Science, Sungkyunkwan University) ;
  • Hyunbeom Lee (Department of Energy Science, Sungkyunkwan University) ;
  • Sangbin Park (Department of Energy Science, Sungkyunkwan University) ;
  • Chanyou Chung (Department of Energy Science, Sungkyunkwan University) ;
  • Sunhyun Hwang (Department of Energy Science, Sungkyunkwan University) ;
  • Won-Sub Yoon (Department of Energy Science, Sungkyunkwan University)
  • 투고 : 2023.08.14
  • 심사 : 2023.10.04
  • 발행 : 2024.02.29

초록

Modern society is making numerous efforts to reduce reliance on carbon-based energy systems. A notable solution in this transition is the adoption of lithium-ion batteries (LIBs) as potent energy sources, owing to their high energy and power densities. Driven by growing environmental challenges, the application scope of LIBs has expanded from their initial prevalence in portable electronic devices to include electric vehicles (EVs) and energy storage systems (ESSs). Accordingly, LIBs must exhibit long-lasting cyclability and high energy storage capacities to facilitate prolonged device usage, thereby offering a potential alternative to conventional sources like fossil fuels. Enhancing the durability of LIBs hinges on a comprehensive understanding of the reasons behind their performance decline. Therefore, comprehending the degradation mechanism, which includes detrimental chemical and mechanical phenomena in the components of LIBs, is an essential step in resolving cycle life issues. The LIB systems presently being commercialized and developed predominantly employ graphite anode and layered oxide cathode materials. A significant portion of the degradation process in LIB systems takes place during the electrochemical reactions involving these electrodes. In this review, we explore and organize the aging mechanisms of LIBs, especially those with graphite anodes and layered oxide cathodes.

키워드

과제정보

This work was supported by the Technology Innovation Program (No. 20024249, 'Development of mass manufacturing technology for high performance lithium iron phosphate composites') funded By the Ministry of Trade, Industry & Energy (MOTIE, Korea). This work was also supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2022R1A2B5B02002624).

참고문헌

  1. W. Lee, J. Kim, S. Yun, W. Choi, H. Kim, and W.-S. Yoon, Energy Environ. Sci., 2020, 13(12), 4406-4449.
  2. T. Nagaura and K. Tozawa, Progress in Batteries & Solar Cells, JEC Press, USA, 1990, 9, 209.
  3. M. Armand and J.-M. Tarascon, Nature, 2008, 451, 652-657.
  4. J. B. Goodenough and Y. Kim, Chem. Mater., 2010, 22(3), 587-603.
  5. P. Arora, R. E. White, and M. Doyle, J. Electrochem. Soc., 1998, 145(10), 3647-3667.
  6. F. Friedrich, B. Strehle, A. T. S. Freiberg, K. Kleiner, S. J. Day, C. Erk, M. Piana, and H. A. Gasteiger, J. Electrochem. Soc., 2019, 166(15), A3760-A3774.
  7. P. Peljo and H. H. Girault, Energy Environ. Sci., 2018, 11(9), 2306-2309.
  8. E. Peled, J. Electrochem. Soc., 1979, 126(12), 2047-2051.
  9. R. Fong, U. von Sacken, and J. R. Dahn, J. Electrochem. Soc., 1990, 137(7), 2009-2013.
  10. V. R. Rikka, S. R. Sahu, A. Chatterjee, P. V. Satyam, R. Prakash, M. S. R. Rao, R. Gopalan, and G. Sundararajan, J. Phys. Chem. C, 2018, 122(50), 28717-28726.
  11. R. Imhof and P. Novak, J. Electrochem. Soc., 1998, 145(4), 1081-1087.
  12. P. M. Attia, S. Das, S. J. Harris, M. Z. Bazant, and W. C. Chueh, J. Electrochem. Soc., 2019, 166(4), E97-E106.
  13. S. Das, P. M. Attia, W. C. Chueh, and M. Z. Bazant, J. Electrochem. Soc., 2019, 166, E107.
  14. P. Novak, F. Joho, M. Lanz, B. Rykart, J.-C. Panitz, D. Alliata, R. Kotz, and O. Haas, J. Power Sources, 2001, 97-98, 39-46.
  15. D. Zhang, B. S. Haran, A. Durairajan, R. E. White, Y. Podrazhansky, and B. N. Popov, J. Power Sources, 2000, 91(2), 122-129.
  16. C. R. Yang, J. Y. Song, Y. Y. Wang, and C. C. Wan, J. Appl. Electrochem., 2000, 30(1), 29-34.
  17. A. J. Smith, J. C. Burns, X. Zhao, D. Xiong, and J. R. Dahn, J. Electrochem. Soc., 2011, 158(5), A447-A452.
  18. D. Aurbach, B. Markovsky, I. Weissman, E. Levi, and Y. Ein-Eli, Electrochim. Acta, 1999, 45(1-2), 67-86.
  19. R. Yazami, Electrochim. Acta, 1999, 45(1-2), 87-97.
  20. X.-G. Yang, Y. Leng, G. Zhang, S. Ge, and C.-Y. Wang, J. Power Sources, 2017, 360, 28-40.
  21. P. Ramadass, B. Haran, R. White, and B. N. Popov, J. Power Sources, 2002, 112(2), 606-613.
  22. A. M. Andersson, K. Edstrom, and J. O. Thomas, J. Power Sources, 1999, 81-82, 8-12.
  23. M. N. Richard and J. R. Dahn, J. Electrochem. Soc., 1999, 146(6), 2068-2077.
  24. M. Broussely, Ph. Biensan, F. Bonhomme, Ph. Blanchard, S. Herreyre, K. Nechev, and R. J. Staniewicz, J. Power Sources, 2005, 146(1-2), 90-96.
  25. T. Yoshida, M. Takahashi, S. Morikawa, C. Ihara, H. Katsukawa, T. Shiratsuchi, and J. Yamaki, J. Electrochem. Soc., 2006, 153, A576.
  26. A. M. Andersson and K. Edstrom, J. Electrochem. Soc., 2001, 148, A1100.
  27. A. M. Andersson, M. Herstedt, A. G. Bishop, and K. Edstrom, Electrochim. Acta, 2002, 47(12), 1885-1898.
  28. R. Yazami and Y. F. Reynier, Electrochim. Acta, 2002, 47(8), 1217-1223.
  29. S. K. Heiskanen, J. Kim, and B. L. Lucht, Joule, 2019, 3, 2322-2333.
  30. E. W. C. Spotte-Smith, R. L. Kam, D. Barter, X. Xie, T. Hou, S. Dwaraknath, S. M. Blau, and K. A. Persson, ACS Energy Lett., 2022, 7(4), 1446-1453.
  31. S. Solchenbach, G. Hong, A. T. S. Freiberg, R. Jung, and H. A. Gasteiger, J. Electrochem. Soc., 2018, 165, A3304.
  32. T. Bond, J. Zhou, and J. Cutler, J. Electrochem. Soc., 2017, 164(1), A6158-A6162.
  33. M.-H. Ryou, J.-N. Lee, D. J. Lee, W.-K. Kim, Y. K. Jeong, J. W. Choi, J.-K. Park, and Y. M. Lee, Electrochim. Acta, 2012, 83, 259-263.
  34. H. Park, T. Yoon, J. Mun, J. H. Ryu, J. J. Kim, and S. M. Oh, J. Electrochem. Soc., 2013, 160(9), A1539-A1543.
  35. T. Feng, Y. Xu, Z. Zhang, X. Du, X. Sun, L. Xiong, R. Rodriguez, and R. Holze, ACS Appl. Mater. Interfaces, 2016, 8(10), 6512-6519.
  36. J. Seo, S. Hyun, J. Moon, J. Y. Lee, and C. Kim, ACS Appl. Energy Mater., 2022, 5(5), 5610-5616.
  37. H. Ota, Y. Sakata, A. Inoue, and S. Yamaguchi, J. Electrochem. Soc., 2004, 151(10), A1659.
  38. V. A. Agubra and J. W. Fergus, J. Power Sources, 2014, 268, 153-162.
  39. J. Asenbauer, T. Eisenmann, M. Kuenzel, A. Kazzazi, Z. Chen, and D. Bresser, Sustain. Energy Fuels, 2020, 4(11), 5387-5416.
  40. E. M. Gavilan-Arriazu, J. M. Humoller, O. A. Pinto, B. A. Lopez de Mishima, E. P. M. Leiva, and O. A. Oviedo, Phys. Chem. Chem. Phys., 2020, 22(28), 16174-16183.
  41. D. Allart, M. Montaru, and H. Gualous, J. Electrochem. Soc., 2018, 165(2), A380-A387.
  42. C. Didier, W. K. Pang, Z. Guo, S. Schmid, V. K. Peterson, Chem. Mater., 2020, 32(6), 2518-2531.
  43. N. Lin, Z. Jia, Z. Wang, H. Zhao, G. Ai, X. Song, Y. Bai, V. Battaglia, C. Sun, J. Qiao, K. Wu, and G. Liu, J. Power Sources, 2017, 365, 235-239.
  44. R. Grantab and V. B. Shenoy, J. Electrochem. Soc., 2011, 158(8), A948.
  45. D. Liu, Y. Wang, Y. Xie, L. He, J. Chen, K. Wu, R. Xu, and Y. Gao, J. Power Sources, 2013, 232, 29-33.
  46. F. Pistorio, D. Clerici, F. Mocera, and A. Soma, Energies, 2022, 15(23), 9168.
  47. S. J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure, and D. L. Wood, Carbon, 2016, 105, 52-76.
  48. J. O. Besenhard, M. Winter, J. Yang, and W. Biberacher, J. Power Sources, 1995, 54(2), 228-231.
  49. T. Abe, H. Fukuda, Y. Iriyama, and Z. Ogumi, J. Electrochem. Soc., 2004, 151(8), A1120.
  50. S. Bhattacharya, A. R. Riahi, A. T. Alpas, J. Power Sources, 2011, 196(20), 8719-8727.
  51. D. Aurbach, E. Zinigrad, Y. Cohen, and H. Teller, Solid State Ion, 2002, 148(3-4), 405-416.
  52. Y. Li, Y. Lu, P. Adelhelm, M.-M. Titirici, and Y.-S. Hu, Chem. Soc. Rev., 2019, 48(17), 4655-4687.
  53. M. Inaba, Z. Siroma, Y. Kawatate, A. Funabiki, and Z. Ogumi, J. Power Sources, 1997, 68(2), 221-226.
  54. M. E. Spahr, T. Palladino, H. Wilhelm, A. Wursig, D. Goers, H. Buqa, M. Holzapfel, and P. Novak, J. Electrochem. Soc., 2004, 151(9), A1383.
  55. J. Zhou, K. Ma, X. Lian, Q. Shi, J. Wang, Z. Chen, L. Guo, Y. Liu, A. Bachmatiuk, J. Sun, R. Yang, J.-H. Choi, and M. H. Rummeli, Small, 2022, 18(15), 2107460.
  56. M. R. Wagner, J. H. Albering, K.-C. Moeller, J. O. Besenhard, and M. Winter, Electrochem. Commun., 2005, 7(9), 947-952.
  57. H. Buqa, A. Wursig, J. Vetter, M. E. Spahr, F. Krumeich, and P. Novak, J. Power Sources, 2006, 153(2), 385-390.
  58. J. Gao, L. J. Fu, H. P. Zhang, T. Zhang, Y. P. Wu, and H. Q. Wu, Electrochem. Commun., 2006, 8(11), 1726-1730.
  59. S. Bhattacharya, A. R. Riahi, and A. T. Alpas, Carbon, 2014, 77, 99-112.
  60. J. C. Burns, D. A. Stevens, and J. R. Dahn, J. Electrochem. Soc., 2015, 162(6), A959-A964.
  61. T. Waldmann, B.-I. Hogg, M. Kasper, S. Grolleau, C. G. Couceiro, K. Trad, B. P. Matadi, and M. Wohlfahrt-Mehrens, J. Electrochem. Soc., 2016, 163(7), A1232-A1238.
  62. X.-B. Cheng, R. Zhang, C.-Z. Zhao, and Q. Zhang, Chem. Rev., 2017, 117(15), 10403-10473.
  63. N. Kim, S. Chae, J. Ma, M. Ko, and J. Cho, Nat. Commun., 2017, 8, 812.
  64. M. Fleischhammer, T. Waldmann, G. Bisle, B.-I. Hogg, M. Wohlfahrt-Mehrens, J. Power Sources, 2015, 274, 432-439.
  65. M. Petzl, M. Kasper, and M. A. Danzer, J. Power Sources, 2015, 275, 799-807.
  66. Y. Chen, L. Torres-Castro, K.-H. Chen, D. Penley, J. Lamb, M. Karulkar, and N. P. Dasgupta, J. Power Sources, 2022, 539, 231601.
  67. C. Uhlmann, J. Illig, M. Ender, R. Schuster, and E. Ivers-Tiffee, J. Power Sources, 2015, 279, 428-438.
  68. U. Janakiraman, T. R. Garrick, and M. E. Fortier, J. Electrochem. Soc., 2020, 167(16), 160552.
  69. J. Cannarella and C. B. Arnold, J. Electrochem. Soc., 2015, 162(7), A1365-A1373.
  70. J. Kim, W. Lee, J. Seok, S. Park, J. K. Yoon, S.-B. Yoon, and W.-S. Yoon, Cell Rep. Phys. Sci., 2023, 4(4), 101331.
  71. R. B. Smith, E. Khoo, and M. Z. Bazant, J. Phys. Chem. C, 2017, 121(23), 12505-12523.
  72. M. Z. Bazant, Acc. Chem. Res., 2013, 46(5), 1144-1160.
  73. S. J. Harris, A. Timmons, D. R. Baker, and C. Monroe, Chem. Phys. Lett., 2010, 485(4-6), 265-274.
  74. T. Gao, Y. Han, D. Fraggedakis, S. Das, T. Zhou, C.-N. Yeh, S. Xu, W. C. Chueh, J. Li, and M. Z. Bazant, Joule, 2021, 5(2), 393-414.
  75. D. Juarez-Robles, A. A. Vyas, C. Fear, J. A. Jeevarajan, and P. P. Mukherjee, J. Electrochem. Soc., 2020, 167(9), 090547.
  76. X. Lin, K. Khosravinia, X. Hu, J. Li, and W. Lu, Prog. Energy Combust. Sci., 2021, 87, 100953.
  77. P. P. Paul, V. Thampy, C. Cao, H.-G. Steinruck, T. R. Tanim, A. R. Dunlop, E. J. Dufek, S. E. Trask, A. N. Jansen, M. F. Toney, and J. N. Weker, Energy Environ. Sci., 2021, 14(9), 4979-4988.
  78. M. Petzl and M. A. Danzer, J. Power Sources, 2014, 254, 80-87.
  79. S.-B. Son, S. Trask, Y. Tsai, S. Lopykinski, M. Kim, and I. Bloom, J. Electrochem. Soc., 2022, 169(6), 060506.
  80. J. Vetter, P. Novak, M. R. Wagner, C. Veit, K.-C. Moller, J. O. Besenhard, M. Winter, M. Wohlfahrt-Mehrens, C. Vogler, and A. Hammouche, J. Power Sources, 2005, 147(1-2), 269-281.
  81. A. B. Gunnarsdottir, C. V. Amanchukwu, S. Menkin, and C. P. Grey, J. Am. Chem. Soc., 2020, 142(49), 20814-20827.
  82. V. Agubra and J. Fergus, Materials, 2013, 6(4), 1310-1325.
  83. J. Noh, W. Chen, P. Wu, Y. Huang, J. Tan, H. Zhou, and C. Yu, Adv. Funct. Mater., 2021, 31(43), 2104899.
  84. Y. Lu, Z. Tu, and L. A. Archer, Nat. Mater., 2014, 13, 961-969.
  85. X. Feng, M. Ouyang, X. Liu, L. Lu, Y. Xia, and X. He, Energy Storage Mater., 2018, 10, 246-267.
  86. W. Mai, A. M. Colclasure, and K. Smith, J. Electrochem. Soc., 2020, 167(8), 080517.
  87. A. M. Colclasure, A. R. Dunlop, S. E. Trask, B. J. Polzin, A. N. Jansen, and K. Smith, J. Electrochem. Soc., 2019, 166(8), A1412-A1424.
  88. B. Heidrich, M. Stamm, O. Fromm, J. Kauling, M. Borner, M. Winter, and P. Niehoff, J. Electrochem. Soc., 2023, 170(1), 010530.
  89. Sungjemmenla, V. S. K., C. B. Soni, V. Kumar, and Z. W. Seh, Energy Technol., 2022, 10(9), 2200421.
  90. N. Zhang, B. Wang, F. Jin, Y. Chen, Y. Jiang, C. Bao, J. Tian, J. Wang, R. Xu, Y. Li, et al., Cell Rep. Phys. Sci., 2022, 3(12), 101197.
  91. D. Li, H. Li, D. Danilov, L. Gao, J. Zhou, R.-A. Eichel, Y. Yang, and P. H. L. Notten, J. Power Sources, 2018, 396, 444-452.
  92. K. Edstrom, T. Gustafsson, and J. O. Thomas, Electrochim. Acta, 2004, 50(2-3), 397-403.
  93. J.-N. Zhang, Q. Li, Y. Wang, J. Zheng, X. Yu, and H. Li, Energy Storage Mater., 2018, 14, 1-7.
  94. K. Xu, Chem. Rev., 2014, 114(23), 11503-11618.
  95. N. Dupre, J.-F. Martin, J. Oliveri, P. Soudan, D. Guyomard, A. Yamada, and R. Kanno, J. Electrochem. Soc., 2009, 156(5), C180.
  96. Y. Wang, X. Guo, S. Greenbaum, J. Liu, and K. Amine, Electrochem. Solid-State Lett., 2001, 4(6), A68.
  97. K. Amine, C. H. Chen, J. Liu, M. Hammond, A. Jansen, D. Dees, I. Bloom, D. Vissers, and G. Henriksen, J. Power Sources, 2001, 97-98, 684-687.
  98. C. H. Chen, J. Liu, and K. Amine, J. Power Sources, 2001, 96(2), 321-328.
  99. X. Cao, Y. Xu, L. Zhang, M. H. Engelhard, L. Zhong, X. Ren, H. Jia, B. Liu, C. Niu, B. E. Matthews, H. Wu, B. W. Arey, C. Wang, J.-G. Zhang, and W. Xu, ACS Energy Lett., 2019, 4(10), 2529-2534.
  100. X. Shangguan, G. Xu, Z. Cui, Q. Wang, X. Du, K. Chen, S. Huang, G. Jia, F. Li, X. Wang, D. Lu, S. Dong, and G. Cui, Small, 2019, 15(16), 1900269.
  101. M. Gauthier, T. J. Carney, A. Grimaud, L. Giordano, N. Pour, H.-H. Chang, D. P. Fenning, S. F. Lux, O. Paschos, C. Bauer, F. Maglia, S. Lupart, P. Lamp, and Y. ShaoHorn, J. Phys. Chem. Lett., 2015, 6(22), 4653-4672.
  102. O. Haik, N. Leifer, Z. Samuk-Fromovich, E. Zinigrad, B. Markovsky, L. Larush, Y. Goffer, G. Goobes, and D. Aurbach, J. Electrochem. Soc., 2010, 157(10), A1099.
  103. T. Nohma, H. Kurokawa, M. Uehara, M. Takahashi, K. Nishio, and T. Saito, J. Power Sources, 1995, 54(2), 522-524.
  104. H.-K. Kim, T.-Y. Seong, W. Cho, and Y. S. Yoon, J. Power Sources, 2002, 109(1), 178-183.
  105. G. V. Zhuang, G. Chen, J. Shim, X. Song, P. N. Ross, and T. J. Richardson, J. Power Sources, 2004, 134(2), 293-297.
  106. Z. Wang, X. Huang, and L. Chen, J. Electrochem. Soc., 2003, 150(2), A199-A208.
  107. Z. Wang, Y. Sun, L. Chen, and X. Huang, J. Electrochem. Soc., 2004, 151(6), A914.
  108. Z. Wang, X. Huang, and L. Chen, J. Electrochem. Soc., 2004, 151(10), A1641.
  109. M. Balasubramanian, H. S. Lee, X. Sun, X. Q. Yang, A. R. Moodenbaugh, J. McBreen, D. A. Fischer, and Z. Fu, Electrochem. Solid-State Lett., 2002, 5(1), A22.
  110. J. K. Papp, N. Li, L. A. Kaufman, A. J. Naylor, R. Younesi, W. Tong, and B. D. McCloskey, Electrochim. Acta, 2021, 368, 137505.
  111. N. Liu, H. Li, Z. Wang, X. Huang, and L. Chen, Electrochem. Solid-State Lett., 2006, 9(7), A328.
  112. D. Aurbach, B. Markovsky, G. Salitra, E. Markevich, Y. Talyossef, M. Koltypin, L. Nazar, B. Ellis, and D. Kovacheva, J. Power Sources, 2007, 165(2), 491-499.
  113. S. R. Li, C. H. Chen, X. Xia, and J. R. Dahn, J. Electrochem. Soc., 2013, 160(9), A1524-A1528.
  114. N. S. Norberg, S. F. Lux, and R. Kostecki, Electrochem. Commun., 2013, 34, 29-32.
  115. D. J. Xiong, R. Petibon, M. Nie, L. Ma, J. Xia, and J. R. Dahn, J. Electrochem. Soc., 2016, 163(3), A546- A551.
  116. B. Markovsky, A. Rodkin, Y. S. Cohen, O. Palchik, E. Levi, D. Aurbach, H.-J. Kim, and M. Schmidt, J. Power Sources, 2003, 119-121, 504-510.
  117. A. von Cresce and K. Xu, J. Electrochem. Soc., 2011, 158(3), A337.
  118. S. R. Li, N. N. Sinha, C. H. Chen, K. Xu, and J. R. Dahn, J. Electrochem. Soc., 2013, 160(11), A2014-A2020.
  119. L. Yang, B. Ravdel, and B. L. Lucht, Electrochem. Solid-State Lett., 2010, 13(8), A95.
  120. D. Sun, Q. Wang, J. Zhou, Y. Lyu, Y. Liu, and B. Guo, J. Electrochem. Soc., 2018, 165(10), A2032-A2036.
  121. L. Li, D. Wang, G. Xu, Q. Zhou, J. Ma, J. Zhang, A. Du, Z. Cui, X. Zhou, and G. Cui, J. Energy Chem., 2022, 65, 280-292.
  122. H. Wang, X. Li, F. Li, X. Liu, S. Yang, and J. Ma, Electrochem. Commun., 2021, 122, 106870.
  123. D.-S. Ko, J.-H. Park, S. Park, Y. N. Ham, S. J. Ahn, J.-H. Park, H. N. Han, E. Lee, W. S. Jeon, and C. Jung, Nano Energy, 2019, 56, 434-442.
  124. R. J. Gummow, A. de Kock, and M. M. Thackeray, Solid State Ion., 1994, 69(1), 59-67.
  125. M. M. Thackeray, Y. Shao-Horn, A. J. Kahaian, K. D. Kepler, E. Skinner, J. T. Vaughery, and S. A. Hackney, Electrochem. Solid-State Lett., 1998, 1(1), 7.
  126. T. Aoshima, K. Okahara, C. Kiyohara, and K. Shizuka, J. Power Sources, 2001, 97-98, 377-380.
  127. C. Zhan, J. Lu, A. J. Kropf, T. Wu, A. N. Jansen, Y.-K. Sun, X. Qiu, and K. Amine, Nat. Commun., 2013, 4(1), 2437.
  128. I. A. Shkrob, A. J. Kropf, T. W. Marin, Y. Li, O. G. Poluektov, J. Niklas, and D. P. Abraham, J. Phys. Chem. C, 2014, 118(42), 24335-24348.
  129. D. R. Gallus, R. Schmitz, R. Wagner, B. Hoffmann, S. Nowak, I. Cekic-Laskovic, R. W. Schmitz, and M. Winter, Electrochim. Acta, 2014, 134, 393-398.
  130. I. Buchberger, S. Seidlmayer, A. Pokharel, M. Piana, J. Hattendorff, P. Kudejova, R. Gilles, and H. A. Gasteiger, J. Electrochem. Soc., 2015, 162(14), A2737-A2746.
  131. D. Aurbach, B. Markovsky, A. Rodkin, E. Levi, Y. S. Cohen, H.-J. Kim, and M. Schmidt, Electrochim. Acta, 2002, 47(27), 4291-4306.
  132. G. Amatucci, J. M. Tarascon, and L. C. Klein, Solid State Ion., 1996, 83(1-2), 167-173.
  133. D. Aurbach, M. D. Levi, K. Gamulski, B. Markovsky, G. Salitra, E. Levi, U. Heider, L. Heider, and R. Oesten, J. Power Sources, 1999, 81-82, 472-479.
  134. C. Zhan, T. Wu, J. Lu, and K. Amine, Energy Environ. Sci., 2018, 11(2), 243-257.
  135. M. Ochida, Y. Domi, T. Doi, S. Tsubouchi, H. Nakagawa, T. Yamanaka, T. Abe, and Z. Ogumi, J. Electrochem. Soc., 2012, 159(7), A961-A966.
  136. A. du Pasquier, A. Blyr, A. Cressent, C. Lenain, G. Amatucci, and J. M. Tarascon, J. Power Sources, 1999, 81-82, 54-59.
  137. Y. Tesfamhret, R. Younesi, and E. J. Berg, J. Electrochem. Soc., 2022, 169(1), 010530.
  138. S. Jurng, S. K. Heiskanen, K. W. D. K. Chandrasiri, M. Y. Abeywardana, and B. L. Lucht, J. Electrochem. Soc., 2019, 166(13), A2721-A2726.
  139. B.-J. Chae, Y. E. Jung, C. Y. Lee, and T. Yim, ACS Sustain. Chem. Eng., 2018, 6(7), 8547-8553.
  140. R. Jung, M. Metzger, F. Maglia, C. Stinner, and H. A. Gasteiger, J. Electrochem. Soc., 2017, 164(7), A1361-A1377.
  141. R. Jung, P. Strobl, F. Maglia, C. Stinner, and H. A. Gasteiger, J. Electrochem. Soc., 2018, 165(11), A2869-A2879.
  142. W. Liu, P. Oh, X. Liu, M.-J. Lee, W. Cho, S. Chae, Y. Kim, and J. Cho, Angew. Chem. Int. Ed., 2015, 54(15), 4440-4457.
  143. J. B. Goodenough and K.-S. Park, J. Am. Chem. Soc., 2013, 135(4), 1167-1176.
  144. W.-S. Yoon, K.-B. Kim, M.-G. Kim, M.-K. Lee, H.-J. Shin, J.-M. Lee, J.-S. Lee, and C.-H. Yo, J. Phys. Chem. B, 2002, 106(10), 2526-2532.
  145. C.-H. Chen, B.-J. Hwang, C.-Y. Chen, S.-K. Hu, J.-M. Chen, H.-S. Sheu, and J.-F. Lee, J. Power Sources, 2007, 174(2), 938-943.
  146. D. Ensling, G. Cherkashinin, S. Schmid, S. Bhuvaneswari, A. Thissen, and W. Jaegermann, Chem. Mater., 2014, 26(13), 3948-3956.
  147. A. M. Kannan, L. Rabenberg, and A. Manthiram, Electrochem. Solid-State Lett., 2003, 6(1), A16-A18.
  148. J. Wandt, A. T. S. Freiberg, A. Ogrodnik, and H. A. Gasteiger, Mater. Today, 2018, 21(8), 825-833.
  149. S. S. Zhang, Energy Storage Mater., 2020, 24, 247-254.
  150. X. Zheng, Z. Cai, J. Sun, J. He, W. Rao, J. Wang, Y. Zhang, Q. Gao, B. Han, K. Xia, R. Sun, and C. Zhou, J. Energy Storage, 2023, 58, 106405.
  151. H.-J. Noh, S. Youn, C. S. Yoon, and Y.-K. Sun, J. Power Sources, 2013, 233, 121-130.
  152. I. Belharouak, W. Lu, D. Vissers, and K. Amine, Electrochem. Commun., 2006, 8(2), 329-335.
  153. H. Wang, E. Rus, T. Sakuraba, J. Kikuchi, Y. Kiya, and H. D. Abruna, Anal. Chem., 2014, 86(13), 6197-6201.
  154. Y. Sun, H. Lu, and Y. Jin, Energy Fuels, 2021, 35(18), 15172-15184.
  155. Q. Li, Q. Liang, H. Zhang, S. Jiao, Z. Zhuo, J. Wang, Q. Li, J.-N. Zhang, and X. Yu, Angew. Chem. Int. Ed., 2023, 62(5), e202215131.
  156. T. Ohsaki, T. Kishi, T. Kuboki, N. Takami, N. Shimura, Y. Sato, M. Sekino, and A. Satoh, J. Power Sources, 2005, 146(1-2), 97-100.
  157. K.-W. Nam, S.-M. Bak, E. Hu, X. Yu, Y. Zhou, X. Wang, L. Wu, Y. Zhu, K.-Y. Chung, and X.-Q. Yang, Adv. Funct. Mater., 2013, 23(8), 1047-1063.
  158. P. Xu, J. Li, N. Lei, F. Zhou, and C. Sun, Int. J. Energy Res., 2021, 45(14), 19985-20000.
  159. X. Liu, D. Ren, H. Hsu, X. Feng, G.-L. Xu, M. Zhuang, H. Gao, L. Lu, X. Han, Z. Chu, J. Li, X. He, K. Amine, and M. Ouyang, Joule, 2018, 2(10), 2047-2064.
  160. Y. Li, X. Liu, L. Wang, X. Feng, D. Ren, Y. Wu, G. Xu, L. Lu, J. Hou, W. Zhang, et al., Nano Energy, 2021, 85, 105878.
  161. J. Kang and B. Han, ACS Appl. Mater. Interfaces, 2015, 7(21), 11599-11603.
  162. L. Wang, G. Liu, R. Wang, X. Wang, L. Wang, Z. Yao, C. Zhan, and J. Lu, Adv. Mater., 2023, 35(11), 2209483.
  163. J.-N. Zhang, Q. Li, C. Ouyang, X. Yu, M. Ge, X. Huang, E. Hu, C. Ma, S. Li, R. Xiao, W. Yang, Y. Chu, Y. Liu, H. Yu, and X.-Q. Ya, Nat. Energy, 2019, 4(7), 594-603.
  164. K. Jia, J. Wang, J. Ma, Z. Liang, Z. Zhuang, G. Ji, R. Gao, Z. Piao, C. Li, G. Zhou, and H.-M. Cheng, Nano Lett., 2022, 22(20), 8372-8380.
  165. W. Lee, S. Muhammad, C. Sergey, H. Lee, J. Yoon, Y.-M. Kang, and W. Yoon, Angew. Chem. Int. Ed., 2020, 59(7), 2578-2605.
  166. S. Li, K. Li, J. Zheng, Q. Zhang, B. Wei, and X. Lu, J. Phys. Chem. Lett., 2019, 10(24), 7537-7546.
  167. J. Kikkawa, S. Terada, A. Gunji, T. Nagai, K. Kurashima, and K. Kimoto, J. Phys. Chem. C, 2015, 119(28), 15823-15830.
  168. M. D. Radin, S. Hy, M. Sina, C. Fang, H. Liu, J. Vinckeviciute, M. Zhang, M. S. Whittingham, Y. S. Meng, and A. V. der Ven, Adv. Energy Mater., 2017, 7(20), 1602888.
  169. H. Gabrisch, R. Yazami, B. Fultz, J. Electrochem. Soc., 2004, 151(6), A891.
  170. H. Wang, Y.-I. Jang, B. Huang, D. R. Sadoway, and Y.-M. Chiang, J. Electrochem. Soc., 1999, 146(2), 473-480.
  171. S. Ahmed, M. Bianchini, A. Pokle, M. S. Munde, P. Hartmann, T. Brezesinski, A. Beyer, J. Janek, and K. Volz, Adv. Energy Mater., 2020, 10(25), 2001026.
  172. N. Yabuuchi, Y.-T. Kim, H. H. Li, and Y. Shao-Horn, Chem. Mater., 2008, 20(15), 4936-4951.
  173. L. Wang, T. Maxisch, and G. Ceder, Chem. Mater., 2007, 19(3), 543-552.
  174. J. Reed and G. Ceder, Chem. Rev., 2004, 104(10), 4513-4534.
  175. Y. Xia, J. Zheng, C. Wang, and M. Gu, Nano Energy, 2018, 49, 434-452.
  176. R. D. Shannon, Acta Cryst., 1976, A32(5), 751-767.
  177. J. R. Dahn, E. W. Fuller, M. Obrovac, and U. von Sacken, Solid State Ion., 1994, 69(3-4), 265-270.
  178. S. Sharifi-Asl, J. Lu, K. Amine, and R. Shahbazian-Yassar, Adv. Energy Mater., 2019, 9(22), 1900551.
  179. F. Lin, I. M. Markus, D. Nordlund, T.-C. Weng, M. D. Asta, H. L. Xin, and M. M. Doeff, Nat. Commun., 2014, 5, 3529.
  180. C. Xu, K. Marker, J. Lee, A. Mahadevegowda, P. J. Reeves, S. J. Day, M. F. Groh, S. P. Emge, C. Ducati, B. L. Mehdi, C. C. Tang, and C. P. Gery, Nat. Mater., 2021, 20, 84-92.
  181. Z. Wang, Z. Wang, D. Xue, J. Zhao, X. Zhang, L. Geng, Y. Li, C. Du, J. Yao, X. Liu, et al., Nano Energy, 2023, 105, 108016.
  182. M. Yoon, Y. Dong, Y. Yoo, S. Myeong, J. Hwang, J. Kim, S.-H. Choi, J. Sung, S. J. Kang, J. Li, and J. Cho, Adv. Funct. Mater., 2020, 30(6), 1907903.
  183. A. Yano, M. Shikano, A. Ueda, H. Sakaebe, and Z. Ogumi, J. Electrochem. Soc., 2017, 164(1), A6116.
  184. N. Taguchi, T. Akita, H. Sakaebe, K. Tatsumi, and Z. Ogumi, J. Electrochem. Soc., 2013, 160(11), A2293.
  185. N. Taguchi, H. Sakaebe, K. Tatsumi, and T. Akita, e-Journal of Surface Science and Nanotechnology, 2015, 13, 284-288.
  186. F. Zhang, S. Lou, S. Li, Z. Yu, Q. Liu, A. Dai, C. Cao, M. F. Toney, M. Ge, X. Xiao, et al., Nat. Commun., 2020, 11, 3050.
  187. Z. Cui and A. Manthiram, Angew. Chem. Int. Ed., 2023, 62(43), e202307243.
  188. P. Hou, J. Yin, M. Ding, J. Huang, and X. Xu, Small, 2017, 13(45), 1701802.
  189. Y. Lee, M. G. Kim, J. Kim, Y. Kim, and J. Cho, J. Electrochem. Soc., 2005, 152(9), A1824.
  190. R.-C. Lee, J. Franklin, C. Tian, D. Nordlund, M. Doeff, and R. Kostecki, J. Power Sources, 2021, 498, 229885.
  191. S.-K. Jung, H. Gwon, J. Hong, K.-Y. Park, D.-H. Seo, H. Kim, J. Hyun, W. Yang, and K. Kang, Adv. Energy Mater., 2014, 4(1), 1300787.
  192. R. Weber, A. J. Louli, K. P. Plucknett, and J. R. Dahn, J. Electrochem. Soc., 2019, 166(10), A1779-A1784.
  193. N. Phattharasupakun, M. M. E. Cormier, E. Lyle, E. Zsoldos, A. Liu, C. Geng, Y. Liu, H. Li, M. Sawangphruk, and J. R. Dahn, J. Electrochem. Soc., 2021, 168(9), 090535.
  194. Z. Zhao, C. Li, Z. Wen, Z. Yang, S. Lu, X. Zhang, S. Chen, B. Wu, F. Wu, and D. Mu, Chem. Eng. J., 2023, 461, 142093.
  195. D. Wang, C. Xin, M. Zhang, J. Bai, J. Zheng, R. Kou, J. Y. P. Ko, A. Huq, G. Zhong, C.-J. Sun, et al., Chem. Mater., 2019, 31(8), 2731-2740.
  196. H. H. Sun, U.-H. Kim, J.-H. Park, S.-W. Park, D.-H. Seo, A. Heller, C. B. Mullins, C. S. Yoon, and Y.-K. Sun, Nat. Commun., 2021, 12, 6552.
  197. M. Jiang, D. L. Danilov, R.-A. Eichel, and P. H. L. Notten, Adv. Energy Mater., 2021, 11(48), 2103005.
  198. W. Lee, D. Lee, Y. Kim, W. Choi, and W.-S. Yoon, J. Mater. Chem. A, 2020, 8(20), 10206-10216.
  199. J. Breger, Y. S. Meng, Y. Hinuma, S. Kumar, K. Kang, Y. Shao-Horn, G. Ceder, and C. P. Grey, Chem. Mater., 2006, 18(20), 4768-4781.
  200. W. Li, X. Liu, H. Celio, P. Smith, A. Dolocan, M. Chi, and A. Manthiram, Adv. Energy Mater., 2018, 8(15), 1703154.
  201. D. Wang, Q. Yan, M. Li, H. Gao, J. Tian, Z. Shan, N. Wang, J. Luo, M. Zhou, and Z. Chen, Nanoscale, 2021, 13(5), 2811-2819.
  202. J. Kim and K. Amine, Electrochem. Commun., 2001, 3(2), 52-55.
  203. Q. Gan, N. Qin, Z. Wang, Z. Li, Y. Zhu, Y. Li, S. Gu, H. Yuan, W. Luo, L. Lu, Z. Xu, and Z. Lu, ACS Appl. Energy Mater., 2020, 3(8), 7445-7455.
  204. Q. Fan, K. Lin, S. Yang, S. Guan, J. Chen, S. Feng, J. Liu, L. Liu, J. Li, and Z. Shi, J. Power Sources, 2020, 477, 228745.
  205. R. Qian, Y. Liu, T. Cheng, P. Li, R. Chen, Y. Lyu, and B. Guo, ACS Appl. Mater. Interfaces, 2020, 12(12), 13813-13823.
  206. W. Lee, S. Muhammad, T. Kim, H. Kim, E. Lee, M. Jeong, S. Son, J.-H. Ryou, and W.-S. Yoon, Adv. Energy Mater., 2018, 8(4), 1701788.
  207. W. Lee, S. Lee, E. Lee, M. Choi, R. Thangavel, Y. Lee, and W.-S. Yoon, Energy Storage Mater., 2022, 44, 441-451.
  208. G. G. Amatucci, J. M. Tarascon, and L. C. Klein, J. Electrochem. Soc., 1996, 143(3), 1114-1123.
  209. W. Li, J. Reimers, and J. Dahn, Solid State Ion., 1993, 67(1-2), 123-130.
  210. C. Hong, Q. Leng, J. Zhu, S. Zheng, H. He, Y. Li, R. Liu, J. Wan, and Y. Yang, J. Mater. Chem. A, 2020, 8(17), 8540-8547.
  211. M. Menetrier, I. Saadoune, S. Levasseur, and C. Delmas, J. Mater. Chem., 1999, 9(5), 1135-1140.
  212. C. A. Marianetti, G. Kotliar, and G. Ceder, Nat. Mater., 2004, 3(9), 627-631.
  213. R. Malik, A. Abdellahi, and G. Ceder, J. Electrochem. Soc., 2013, 160(5), A3179-A3197.
  214. Y. Orikasa, T. Maeda, Y. Koyama, H. Murayama, K. Fukuda, H. Tanida, H. Arai, E. Matsubara, Y. Uchimoto, and Z. Ogumi, Chem. Mater., 2013, 25(7), 1032-1039.
  215. M. Wagemaker, A. V. D. Ven, D. Morgan, G. Ceder, F. M. Mulder, and G. J. Kearley, Chem. Phys., 2005, 317(2-3), 130-136.
  216. Z. Chen and J. R. Dahn, Electrochim. Acta, 2004, 49(7), 1079-1090.
  217. H.-H. Ryu, K.-J. Park, C. S. Yoon, and Y.-K. Sun, Chem. Mater., 2018, 30(3), 1155-1163.
  218. C. S. Yoon, D.-W. Jun, S.-T. Myung, and Y.-K. Sun, ACS Energy Lett., 2017, 2(5), 1150-1155.
  219. H.-H. Ryu, G.-T. Park, C. S. Yoon, and Y.-K. Sun, J. Mater. Chem. A, 2019, 7(31), 18580-18588.
  220. P. Yan, J. Zheng, M. Gu, J. Xiao, J.-G. Zhang, and C.-M. Wang, Nat. Commun., 2017, 8, 14101.
  221. H. Liu, M. Wolfman, K. Karki, Y.-S. Yu, E. A. Stach, J. Cabana, K. W. Chapman, and P. J. Chupas, Nano Lett., 2017, 17(6), 3452-3457.
  222. Y. Jiang, P. Yan, M. Yu, J. Li, H. Jiao, B. Zhou, and M. Sui, Nano Energy, 2020, 78, 105364.
  223. M. M. Besli, S. Xia, S. Kuppan, Y. Huang, M. Metzger, A. K. Shukla, G. Schneider, S. Hellstrom, J. Christensen, M. M. Doeff, and Y. Liu., Chem. Mater., 2019, 31(2), 491-501.
  224. S. Xia, L. Mu, Z. Xu, J. Wang, C. Wei, L. Liu, P. Pianetta, K. Zhao, X. Yu, F. Lin, and Y. Liu, Nano Energy, 2018, 53, 753-762.
  225. K.-J. Park, H.-G. Jung, L.-Y. Kuo, P. Kaghazchi, C. S. Yoon, and Y.-K. Sun, Adv. Energy Mater., 2018, 8(25), 1801202.
  226. T. T. Nguyen, U.-H. Kim, C. S. Yoon, and Y.-K. Sun, Chem. Eng. J., 2021, 405, 126887.
  227. J. Langdon and A. Manthiram, Energy Storage Mater., 2021, 37, 143-160.
  228. U.-H. Kim, E.-J. Lee, C. S. Yoon, S.-T. Myung, and Y.-K. Sun, Adv. Energy Mater., 2016, 6(22), 1601417.
  229. K.-J. Park, M.-J. Choi, F. Maglia, S.-J. Kim, K.-H. Kim, C. S. Yoon, and Y.-K. Sun, Adv. Energy Mater., 2018, 8(19), 1703612.