DOI QR코드

DOI QR Code

Molybdenum-Based Electrocatalysts for Direct Alcohol Fuel Cells: A Critical Review

  • Gaurav Kumar Yogesh (Department of Physics and Astrophysics, Central University of Haryana) ;
  • Rungsima Yeetsorn (Materials and Production Engineering, The Sirindhorn International Thai–German Graduate School of Engineering, King Mongkut's University of Technology North Bangkok) ;
  • Waritnan Wanchan (Materials and Production Engineering, The Sirindhorn International Thai–German Graduate School of Engineering, King Mongkut's University of Technology North Bangkok) ;
  • Michael Fowler (Department of Chemical Engineering, University of Waterloo) ;
  • Kamlesh Yadav (Department of Physics, University of Allahabad) ;
  • Pankaj Koinkar (Department of Optical Science, Tokushima University)
  • 투고 : 2023.06.19
  • 심사 : 2023.10.16
  • 발행 : 2024.02.29

초록

Direct alcohol fuel cells (DAFCs) have gained much attention as promising energy conversion devices due to their ability to utilize alcohol as a fuel source. In this regard, Molybdenum-based electrocatalysts (Mo-ECs) have emerged as a substitution for expensive Pt and Ru-based co-catalyst electrode materials in DAFCs, owing to their unique electrochemical properties useful for alcohol oxidation. The catalytic activity of Mo-ECs displays an increase in alcohol oxidation current density by several folds to 1000-2000 mA mgPt-1, compared to commercial Pt and PtRu catalysts of 10-100 mA mgPt-1. In addition, the methanol oxidation peak and onset potential have been significantly reduced by 100-200 mV and 0.5-0.6 V, respectively. The performance of Mo-ECs in both acidic and alkaline media has shown the potential to significantly reduce the Pt loading. This review aims to provide a comprehensive overview of the bifunctional mechanism involved in the oxidation of alcohols and factors affecting the electrocatalytic oxidation of alcohol, such as synthesis method, structural properties, and catalytic support materials. Furthermore, the challenges and prospects of Mo-ECs for DAFCs anode materials are discussed. This in-depth review serves as valuable insight toward enhancing the performance and efficiency of DAFC by employing Mo-ECs.

키워드

과제정보

The authors sincerely thank King Mongkut's University of Technology North Bangkok, Thailand, for funding this research work under the Postdoctoral Program (Grant No. KMUTNB-POST-66-09, KMUTNB-64-KNOW-08).

참고문헌

  1. S. Basri, S. K. Kamarudin, W. R. W. Daud, and Z. Yaakub, Int. J. Hydrogen Energy, 2010, 35(15), 7957-7970. 
  2. A. B. Anderson, E. Grantscharova, and S. Seong, J. Electrochem. Soc., 1996, 143(6), 2075-2082. 
  3. R. Yeetsorn, W. P. Ouajai, and K. Onyu, RSC Adv., 2020, 10, 24330-24342. 
  4. R. Yeetsorn, Y. Maiket, and W. Kaewmanee, RSC Adv., 2020, 10, 13100-13111. 
  5. D. M. Fadzillah, S. K. Kamarudin, M. A. Zainoodin, and M. S. Masdar, Int. J. Hydrogen Energy, 2019, 44(5), 3031-3054. 
  6. M. Bowker, A. F. Carley, and M. House, Catal. Lett., 2008, 120(1-2), 34-39. 
  7. C.-W. Liu, Y.-W. Chang, Y.-C. Wei, and K.-W. Wang, Electrochim. Acta., 2011, 56(1), 2574-2581. 
  8. D. M. dos Anjos, K. B. Kokoh, J. M. Leger, A. R. D. Andrade, P. Olivi, and G. Tremiliosi-Filho, J. Appl. Electrochem., 2006, 36, 1391-1397. 
  9. B. Beden , C. Lamy, N. R. de Tacconi, and A. J. Arvia, Electrochim. Acta., 1990, 35(4), 691-704. 
  10. A. De, J. Datta, I. Haldar, and M. Biswas, ACS Appl. Mater. Interfaces, 2016, 8(42), 28574-28584. 
  11. A. Yuda, A. Ashok, and A. Kumar, Catal. Rev., 2022, 64(1), 126-228. 
  12. P. Ferrin, A. U. Nilekar, J. Greeley, M. Mavrikakis, and J. Rossmeisl, Surf. Sci., 2008, 602, 3424-3431. 
  13. P. Salarizadeh, M. B. Askari, and A. D. Bartolomeo, ACS Appl. Nano Mater., 2022, 5(3), 3361-3373. 
  14. E. Lee, A. Murthy, and A. Manthiram, Electrochim. Acta, 2011, 56, 1611-1618. 
  15. Y. Wang, E. R. Fachini, G. Cruz, Y. Zhu, Y. Ishikawa, J. A. Colucci, and C. R. Cabrera, J. Electrochem. Soc., 2001, 148, C222. 
  16. S. Chen, F. Ye, and W. Lin, Int. J. Hydrogen Energy, 2010, 35(15), 8225-8233. 
  17. Y. Gan, H. Huang, and W.Zhang, Trans. Nonferrous Met. Soc. China, 2007, 17(1), 214-219. 
  18. R. Vellacheri, S. M. Unni, S. Nahire, U. K. Kharul, and S. Kurungot, Electrochim. Acta, 2010, 55(8), 2878-2887. 
  19. O. Guillen-Villafuerte, G. Garcia, J. L. Rodriguez, E. Pastor, R. Guil-Lopez, E. Nieto, and J. L. G. Fierro, Int. J. Hydrogen Energy, 2013, 38(19), 7811-7821. 
  20. C. Song, M. Khanfar, and P. G. Pickup, J. Appl. Electrochem., 2006, 36, 339-345. 
  21. S. Ramakrishnan, M. Karuppannan, M. Vinothkannan, K. Ramachandran, O. J. Kwon, and D. J. Yoo, ACS Appl. Mater. Interfaces, 2019, 11(13), 12504-12515. 
  22. R. Parsons and T. VanderNoot, J. Electroanal. Chem. Interfacial Electrochem., 1988, 257(1-2), 9-45. 
  23. G. Samjeske, H. Wang, T. Loffler, and H. Baltruschat, Electrochim. Acta, 2002, 47(22-23), 3681-3692. 
  24. F. Yang, F. Li, Y. Wang, X. Chen, D. Xia, and J. Liu, J. Mol. Catal. A Chem., 2015, 400, 7-13. 
  25. M. K. Jeon, K. R. Lee, and S. I. Woo, Korean J. Chem. Eng., 2009, 26, 1028-1033. 
  26. B. N. Grgur, N. M. Markovic, and P. N. Ross, J. Phys. Chem. B, 1998, 102(14), 2494-2501. 
  27. A. B. Kashyout, A. B. A. A. Nassr, L. Giorgi, T. Maiyalagan, and B. A. B. Youssef, Int. J. Electrochem. Sci., 2011, 6, 379-393. 
  28. S. Wu, J. Liu, Z. Tian, Y. Cai, Y. Ye, Q. Yuan, and C. Liang, ACS Appl. Mater. Interfaces, 2015, 7, 22935-22940. 
  29. L. Lai, G. Yang, Q. Zhang, H. Yu, and F. Peng, J. Power Sources, 2021, 509, 230397. 
  30. B. N. Grgur, G. Zhuang, N. M. Markovic, and P. N. Ross, J. Phys. Chem. B, 1997, 101, 3910-3913. 
  31. S. Mukerjee, S. J. Lee, E. A. Ticianelli, J. McBreen, B. N. Grgur, N. M. Markovic, P. N. Ross, J. R. Giallombardo, and E. S. De Castro, Electrochem. Solid-State Lett., 1999, 2(1), 12-15. 
  32. H. Massong, H. Wang, G. Samjeske, and H. Baltruschat, Electrochim. Acta, 2001, 46(5), 701-707. 
  33. A. Lima, C. Coutanceau, J. M. Leger, and C. Lamy, J. Appl. Electrochem., 2001, 31, 379-386. 
  34. A. Oliveira Neto, E. G. Franco, E. Arico, M. Linardi, and E. R. Gonzalez, J. Eur. Ceram. Soc., 2003, 23(15), 2987-2992. 
  35. J. M. Jaksic, L. M. Vracar, S. G. Neophytides, and N. V. Krstajic, Chem. Ind. Chem. Eng. Q., 2005, 11(3), 129-136. 
  36. J. M. Jaksic, L. Vracar, S. G. Neophytides, S. Zafeiratos, G. Papakonstantinou, N. V. Krstajic, and M. M. Jaksic, Surf. Sci., 2005, 598(1-3), 156-173. 
  37. S. Li, Y. Zhang, Y. Han, F. Lv, B. Liu, and L. Huo, Appl. Surf. Sci., 2022, 600, 154134. 
  38. C. V. Ramana, A. Mauger, and C. M. Julien, Prog. Cryst. Growth Charact. Mater., 2021, 67(3), 100533. 
  39. N. R. Elezovic, L. M. Gajic-Krstajic, L. M. Vracar, and N. V. Krstajic, Int. J. Hydrogen Energy, 2010, 35(23), 12878-12887. 
  40. M. B. Askari, P. Salarizadeh, M. Seifi, and S. M. Rozati, J. Phys. Chem. Solids, 2019, 135, 109103. 
  41. P. Basumatary, D. Konwar, and Y. S. Yoon, Appl. Catal. B Environ., 2020, 267, 118724. 
  42. A. Sharma, S. K. Mehta, S. Singh, and S. Gupta, J. Appl. Electrochem., 2016, 46(1), 27-38. 
  43. J. Huang, Z. Liu, C. He, and L. M. Gan, J. Phys. Chem. B, 2005, 109(35), 16644-16649. 
  44. Y. Dai, K. Sun, and Y. Li, J. Electroanal. Chem., 2015, 757, 94-99. 
  45. L. Ou and S. Chen, J. Electrochem., 2013, 19(1), 10. 
  46. F. Fathirad, A. Mostafavi, and D. Afzali, Int. J. Hydrogen Energy, 2017, 42, 3215-3221. 
  47. K. Chang, X. Hai, H. Pang, H. Zhang, L. Shi, G. Liu, H. Liu, G. Zhao, M. Li, and J. Ye, Adv. Mater., 2016, 28(45), 10033-10041. 
  48. A. Gopalakrishnan, L. Durai, J. Ma, C. Y. Kong, and S. Badhulika, Energy Fuels, 2021, 35(12), 10169-10180. 
  49. B. Tang, Y. Lv, J. Du, Y. Dai, S. Pan, Y. Xie, and J. Zou, ACS Sustain. Chem. Eng., 2019, 7(13), 11101-11109. 
  50. N. A. M. Barakat and M. A. Ali, Sci. Rep., 2022, 12, 22574. 
  51. S. Izhar and M. Nagai, Open Catal. J., 2013, 6, 37-40. 
  52. K. Zhang, W. Yang, C. Ma, Y. Wang, C. Sun, Y. Chen, P. Duchesne, J. Zhou, J. Wang, Y. Hu, M. N. Banis, P. Zhang, F. Li, J. Li, and L. Chen, NPG Asia Mater., 2015, 7, e153. 
  53. Z. Yan, H. Wang, M. Zhang, Z. Jiang, T. Jiang, and J. Xie, Electrochim. Acta, 2013, 95, 218-224. 
  54. N. Kakati, J. Maiti, S. H. Lee, and Y. S. Yoon, Int. J. Hydrogen Energy, 2012, 37(24), 19055-19064. 
  55. Z.-P. Sun, X.-G. Zhang, Y.-Y. Liang, and H.-L. Li, Electrochem. Commun., 2009, 11(3), 557-561. 
  56. A. Miura, M. E. Tague, J. M. Gregoire, X.-D. Wen, R. B. van Dover, H. D. Abruna, and F. J. Disalvo, Mater. Chem., 2010, 22(11), 3451-3456. 
  57. M. Gonzalez-Hernandez, E. Antolini, and J. Perez, Int. J. Hydrogen Energy, 2020, 45(8), 5276-5284. 
  58. S. Maass, F. Finsterwalder, G. Frank, R. Hartmann, and C. Merten, J. Power Sources, 2008, 176(2), 444-451. 
  59. K. H. Kangasniemi, D. A. Condit, and T. D. Jarvi, J. Electrochem. Soc., 2004, 151(4), E125. 
  60. M. Li, J. Shi, X. Guo, Y. Ying, Y. Wu, Y. Wen, and H. Yang, J. Electroanal. Chem., 2023, 928, 117038. 
  61. N. Tsiouvaras, M. V. Martinez-Huerta, R. Moliner, M. J. Lazaro, J. L. Rodriguez, E. Pastor, M. A. Pena, and J. L. G. Fierro, J. Power Sources, 2009, 186(2), 299-304. 
  62. R. Yeetsorn, The Journal of KMITNB, 2004, 14(4), 60-64. 
  63. M. N. Groves, A. S. W. Chan, C. Malardier-Jugroot, and M. Jugroot, Chem. Phys. Lett., 2009, 481(4-6), 214-219. 
  64. R. I. Jafri, N. Rajalakshmi, K. S. Dhathathreyan, and S. Ramaprabhu, Int. J. Hydrogen Energy, 2015, 40(12), 4337-4348. 
  65. Q. Sun and S. Kim, Electrochim. Acta, 2015, 153, 566-573. 
  66. A. Heydari and H. Gharibi, J. Power Sources, 2016, 325, 808-815. 
  67. C. Zhai, M. Zhu, D. Bin, F. Ren, C. Wang, P. Yang, and Y. Du, J. Power Sources, 2015, 275, 483-488. 
  68. Y. Zhou, D. Liu, W. Qiao, Z. Liu, J. Yang, and L. Feng, Mater. Today Phys., 2021, 17, 100357. 
  69. Y. Wang, G. Wang, G. Li, B. Huang, J. Pan, Q. Liu, J. Han, L. Xiao, J. Lu, and L. Zhuang, Energy Environ. Sci., 2015, 8(1), 177-181. 
  70. S. Mukerjee and R. C. Urian, Electrochim. Acta, 2002, 47(19), 3219-3231. 
  71. N. Tsiouvaras, M. V. Martinez-Huerta, O. Paschos, U. Stimming, J. L. G. Fierro, and M. A. Pena, Int. J. Hydrogen Energy, 2010, 35(20), 11478-11488. 
  72. Z. Cui, M. Yang, and F. J. Di Salvo, Electrochem. Commun., 2013, 33, 63-67. 
  73. C.V. Rao and B. Viswanathan, Electrochim. Acta, 2010, 55(8), 3002-3007. 
  74. M. V. Martinez-Huerta, J. L. Rodriguez, N. Tsiouvaras, M. A. Pena, J. L. G. Fierro, and E. Pastor, Chem. Mater., 2008, 20(13), 4249-4259. 
  75. T. Iwasita and F. C. Nart, J. Electroanal. Chem. Interfacial Electrochem., 1991, 317(1-2), 291-298. 
  76. P. W. Faguy, N. Markovic, and P. N. Ross, J. Electrochem. Soc., 1993, 140, 1638-1641. 
  77. E. H. Fontes, R. M. Piasentin, J. M. S. Ayoub, J. C. M. da Silva, M. H. M. T. Assumpcao, E. V. Spinace, A. O. Neto, and R. F. B. de Souza, Mater. Renew. Sustain. Energy, 2015, 4(1), 3. 
  78. Z.-Y. Zhou, Q. Wang, J.-L. Lin, N. Tian, and S.-G. Sun, Electrochim. Acta, 2010, 55(27), 7995-7999. 
  79. X. Fang, L. Wang, P. K. Shen, G. Cui, and C. Bianchini, J. Power Sources, 2010, 195(5), 1375-1378. 
  80. A. O. Neto, J. Nandenha, M. H. M. T. Assumpcao, M. Linardi, E. V. Spinace, and R. F. B. de Souza, Int. J. Hydrogen Energy, 2013, 38(25), 10585-10591. 
  81. Z. Liu, J. E. Hu, Q. Wang, K. Gaskell, A. I. Frenkel, G. S. Jackson, and B. Eichhorn, J. Am. Chem. Soc., 2009, 131(20), 6924-6925. 
  82. A. Hassan, A. Carreras, J. Trincavelli, and E. A. Ticianelli, J. Power Sources, 2014, 247, 712-720. 
  83. S. Mukerjee, R. C. Urian, S. J. Lee, E. A. Ticianelli, and J. McBreen, J. Electrochem. Soc., 2004, 151(7), A1094. 
  84. B. N. Grgur, N. M. Markovic, and P. N. Ross, J. Electrochem. Soc., 1999, 146(5), 1613-1619. 
  85. N. Tsiouvaras, M. A. Pena, J. L. G. Fierro, E. Pastor, and M. V. Martinez-Huerta, Catal. Today, 2010, 158(1-2), 12-21. 
  86. S. Feng, J. Chen, G. Qian, Y. Mo, J. Lu, W. Chen, L. Luo, and S. Yin, ACS Appl. Energy Mater., 2020, 3(12), 12246-12253. 
  87. D. K. Kang, C. S. Noh, N. H. Kim, S.-H. Cho, J. M. Sohn, T. J. Kim, and Y.-K. Park, J. Ind. Eng. Chem., 2010, 16(3), 385-389. 
  88. R. A. M. Esfahani and E. B. Easton, Appl. Catal. B Environ., 2020, 268, 118743. 
  89. R. C. Urian, A. F. Gulla, and S. Mukerjee, J. Electroanal. Chem., 2003, 554-555, 307-324. 
  90. S. R. Pillai, S. H. Sonawane, S. P. Gumfekar, P. L. Suryawanshi, M. Ashokkumar, and I. Potoroko, Mater. Chem. Phys., 2019, 237, 121854. 
  91. A. Sarkar, A. V. Murugan, and A. Manthiram, J. Phys. Chem. C, 2008, 112(31), 12037-12043. 
  92. V. Raghuveer, A. Manthiram, and A. J. Bard, J. Phys. Chem. B, 2005, 109, 22909-22912. 
  93. P. Li, X. Yin, Y. Yan, K. Zhan, J. Yang, B. Zhao, and J. Li, J. Mater. Sci., 2018, 53, 6124-6134. 
  94. S. Chandrasekaran, E. J. Kim, J. S. Chung, C. R. Bowen, B. Rajagopalan, V. Adamaki, R. D. K. Misra, and S. H. Hur, J. Mater. Chem. A, 2016, 4, 13271-13279. 
  95. C. Tang, A. Sun, Y. Xu, Z. Wu, and D. Wang, J. Power Sources, 2015, 296, 18-22. 
  96. Y. Hu and D. H. C. Chua, Sci. Rep., 2016, 6, 28088. 
  97. M. Bayati, X. Liu, P. Abellan, D. Pocock, M. Dixon, and K. Scott, ACS Appl. Energy Mater., 2020, 3(1), 843-851. 
  98. T. Li, Z. Tang, K. Wang, W. Wu, S. Chen, and C. Wang, Int. J. Hydrogen Energy, 2018, 43, 4932-4941. 
  99. A. M. Gomez-Marin, J. L. Bott-Neto, J. B. Souza Jr., T. L. Silva, W. Beck Jr., L. C. Varanda, and E. A. Ticianelli, ChemElectroChem, 2016, 3(10), 1570-1579. 
  100. A. Vass, I. Borbath, I. Bakos, Z. Paszti, G. Safran, and A. Tompos, Reac. Kinet. Mech. Cat., 2019, 126, 679-699. 
  101. M. T. Anwar, X. Yan, M. R. Asghar, N. Husnain, S. Shen, L. Luo, X. Cheng, G. Wei, and J. Zhang, Chinese J. Catal., 2019, 40(8), 1160-1167. 
  102. J. Qi, L. Jiang, Q. Jiang, S. Wang, and G. Sun, J. Phys. Chem. C, 2010, 114(42), 18159-18166. 
  103. M. Feng, J. Huang, Y. Peng, C. Huang, X. Yue, and S. Huang, Chem. Eng. J., 2021, 428, 131206. 
  104. E. C. Weigert, D. V. Esposito, and J. G. Chen, J. Power Sources, 2009, 193(2), 501-506. 
  105. X. Liu, H. Wang, S. Chen, X. Qi, H. Gao, Y. Hui, Y. Bai, L. Guo, W. Ding, and Z. Wei, J. Energy Chem., 2014, 23(3), 358-362. 
  106. L. G. S. Pereira, V. A. Paganin, and E. A. Ticianelli, Electrochim. Acta, 2009, 54(7), 1992-1998. 
  107. M.-K. Min, J. Cho, K. Cho, and H. Kim, Electrochim. Acta, 2000, 45(25-26), 4211-4217. 
  108. T. C. M. Nepel, P. P. Lopes, V. A. Paganin, and E. A. Ticianelli, Electrochim. Acta, 2013, 88, 217-224. 
  109. A. Hassan, V. A. Paganin, A. Carreras, and E. A. Ticianelli, Electrochim. Acta, 2014, 142, 307-316. 
  110. N. P. Lebedeva and G. J. M. Janssen, Electrochim. Acta, 2005, 51(1), 29-40. 
  111. G. Papakonstantinou, F. Paloukis, A. Siokou, and S. G. Neophytides, J. Electrochem. Soc., 2007, 154, B989. 
  112. T.-C. Liu, W. G. Pell, B. E. Conway, and S. L. Roberson, J. Electrochem. Soc., 1998, 145(6), 1882-1888. 
  113. S. L. Roberson, D. Finello, and R. F. Davis, J. Appl. Electrochem., 1999, 29, 75-80. 
  114. J. Hu, Z. Liu, B. Eichhorn, and G. S. Jackson, ECS Trans., 2009, 19(31), 1-12. 
  115. B. Mendoza-Sanchez, T. Brousse, C. Ramirez-Castro, V. Nicolosi, and P. S. Grant, Electrochim. Acta, 2013, 91, 253-260.