DOI QR코드

DOI QR Code

A Review of Strategies to Improve the Stability of Carbon-supported PtNi Octahedral for Cathode Electrocatalysts in Polymer Electrolyte Membrane Fuel Cells

  • In Gyeom Kim (Hydrogen.Fuel Cell Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Sung Jong Yoo (Hydrogen.Fuel Cell Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Jin Young Kim (Hydrogen.Fuel Cell Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Hyun S. Park (Hydrogen.Fuel Cell Research Center, Korea Institute of Science and Technology (KIST)) ;
  • So Young Lee (Hydrogen.Fuel Cell Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Bora Seo (Hydrogen.Fuel Cell Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Kwan-Young Lee (Department of Chemical and Biological Engineering, Korea University) ;
  • Jong Hyun Jang (Hydrogen.Fuel Cell Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Hee-Young Park (Hydrogen.Fuel Cell Research Center, Korea Institute of Science and Technology (KIST))
  • 투고 : 2023.09.25
  • 심사 : 2023.10.18
  • 발행 : 2024.02.29

초록

Polymer electrolyte membrane fuel cells (PEMFCs) are green energy conversion devices, for which commercial markets have been established, owing to their application in fuel cell vehicles (FCVs). Development of cathode electrocatalysts, replacing commercial Pt/C, plays a crucial role in factors such as cost reduction, high performance, and durability in FCVs. PtNi octahedral catalysts are promising for oxygen reduction reactions owing to their significantly higher mass activity (10-15 times) than that of Pt/C; however, their application in membrane electrode assemblies (MEAs) is challenged by their low stability. To overcome this durability issue, various approaches, such as third-metal doping, composition control, halide treatment, formation of a Pt layer, annealing treatment, and size control, have been explored and have shown promising improvements in stability in rotating disk electrode (RDE) testing. In this review, we aimed to compare the features of each strategy in terms of enhancing stability by introducing a stability improvement factor for a direct and reasonable comparison. The limitations of each strategy for enhancing stability of PtNi octahedral are also described. This review can serve as a valuable guide for the development of strategies to enhance the durability of octahedral PtNi.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (NRF-2020M1A2A2080806 and NRF-2022M3J1A1085384), and the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Ministry of Trade, Industry & Energy (MOTIE) (No. 20203010030010), and the Korea Institute of Science and Technology (KIST) Institutional Program.

참고문헌

  1. J. Hou, M. Yang, C. Ke, G. Wei, C. Priest, Z. Qiao, G. Wu, and J. Zhang, EnergyChem, 2020, 2(1), 100023.
  2. A. Lim, M. K. Cho, S. Y. Lee, H.-J. Kim, S. J. Yoo, Y.-E. Sung, J. H. Jang, and H. S. Park, J. Electrochem. Sci. Technol., 2017, 8(4), 265-273.
  3. M. K. Cho, A. Lim, S. Y. Lee, H.-J. Kim, S. J. Yoo, Y.-E. Sung, H. S. Park, and J. H. Jang, J. Electrochem. Sci. Technol., 2017, 8(3),183-196.
  4. H. Kim, D. I. Kim, and W.-S. Yoon, J. Electrochem. Sci. Technol., 2022, 13(1), 32-53.
  5. W. Zhao, W. Choi, W.-S. Yoon, J. Electrochem. Sci. Technol., 2020, 11(3), 195-219.
  6. G. Zheng, Z. Li, J. Lu, J. Zhang, L. Chen, and M. Yang, J. Electrochem. Sci. Technol., 2020, 11(4), 399-405.
  7. C. Zhang, X. Shen, Y. Pan, and Z. Peng, Front. Energy, 2017, 11, 268-285.
  8. D. Y. Chung, J. M. Yoo, and Y.-E. Sung, Adv. Mater., 2018, 30(42), 1704123.
  9. D. Banham and S. Ye, ACS Energy Lett., 2017, 2(3), 629-638.
  10. A. Kongkanand and M. F. Mathias, J. Phys. Chem. Lett., 2016, 7(7), 1127-1137.
  11. B. Popov, Development of ultra-low doped-Pt cathode catalysts for PEM fuel cells , 2014 DOE Hydrogen and Fuel Cells Program Review, Washington, DC, 2014. https://www.hydrogen.energy.gov/docs/hydrogenprogramlibraries/pdfs/review14/fc088_popov_2014_o.pdf
  12. M. Kiani, X. Q. Tian, and W. Zhang, Coord. Chem. Rev., 2021, 441, 213954.
  13. A. A. Gewirth, J. A. Varnell, and A. M. DiAscro, Chem. Rev., 2018, 118(5), 2313-2339.
  14. Y. J. Sa, J. H. Kim, and S. H. Joo, J. Electrochem. Sci. Technol., 2017, 8(3), 169-182.
  15. M. Xie, Z. Lyu, R. Chen, M. Shen, Z. Cao, and Y. Xia, J. Am. Chem. Soc., 2021, 143(22), 8509-8518.
  16. L. Wang, W. Gao, Z. Liu, Z. Zeng, Y. Liu, M. Giroux, M. Chi, G. Wang, J. Greeley, X. Pan, and C. Wang, ACS Catal., 2018, 8(1), 35-42.
  17. S. Mi, N. Cheng, H. Jiang, C. Li, and H. Jiang, RSC Adv., 2018, 8(28), 15344-15351.
  18. L. Wang, C. Xu, M.-Y. Li, L.-J. Li, and Z.-H. Loh, Nano Lett., 2018, 18(8), 5172-5178.
  19. M. Lokanathan, I. M. Patil, P. Mukherjee, A. Swami, and B. Kakade, ACS Sustainable Chem. Eng., 2020, 8(2), 986-993.
  20. Y. Nie, J. Deng, S. Chen, and Z. Wei, Int. J. Hydrogen Energy, 2019, 44(12), 5921-5928.
  21. T. Yoshida and K. Kojima, Electrochem. Soc. Interface, 2015, 24(2), 45.
  22. Heraeus Precious Metals, PGM MARKET ANALYSIS : Platinum demand from fuel cell cars - dream or realtiy?, 2018. https://www.heraeus.com/media/media/hpm/doc_hpm/precious_metal_update/en_6/20181031_PGM_Market_Analysis.pdf
  23. H. Hao, Y. Geng, J. E. Tate, F. Liu, X. Sun, Z. Mu, D. Xun, Z. Liu, and F. Zhao, One Earth, 2019, 1(1), 117-125.
  24. X. Zhao and K. Sasaki, Acc. Chem. Res., 2022, 55(9), 1226-1236.
  25. J. Li, S. Sharma, X. Liu, Y.-T. Pan, J.S. Spendelow, M. Chi, Y. Jia, P. Zhang, D. A. Cullen, Z. Xi, H. Lin, Z. Yin, B. Shen, M. Muzzio, C. Yu, Y. S. Kim, A. A. Peterson, K. L. More, H. Zhu, and S. Sun, Joule, 2019, 3(1), 124-135.
  26. M. Heggen, M. Oezaslan, L. Houben, and P. Strasser, J. Phys. Chem. C, 2012, 116(36), 19073-19083.
  27. Z. Liu, C. Yu, I. A. Rusakova, D. Huang, and P. Strasser, Top. Catal., 2008, 49, 241-250.
  28. S. Lee, J.-H. Jang, I. Jang, D. Choi, K.-S. Lee, D. Ahn, Y. S. Kang, H.-Y. Park, and S. J. Yoo, J. Catal., 2019, 379, 112-120.
  29. W. Zhao, Y. Ye, W. Jiang, J. Li, H. Tang, J. Hu, L. Du, Z. Cui, and S. Liao, J. Mater. Chem. A, 2020, 8(31), 15822-15828.
  30. E. B. Tetteh, C. Gyan-Barimah, H.-Y. Lee, T.-H. Kang, S. Kang, S. Ringe, and J.-S. Yu, ACS Appl. Mater. Interfaces, 2022, 14(22), 25246-25256.
  31. M. Grandi, K. Mayer, M. Gatalo, G. Kapun, F. RuizZepeda, B. Marius, M. Gaberscek, and V. Hacker, Energies, 2021, 14(21), 7299.
  32. A. Kobayashi, T. Fujii, K. Takeda, K. Tamoto, K. Kakinuma, and M. Uchida, ACS Appl. Energy Mater., 2022, 5(1), 316-329.
  33. J. Lobato, P. Canizares, M. A. Rodrigo, J. J. Linares, D. Ubeda, and F. J. Pinar, Fuel cells, 2010, 10(2), 312-319.
  34. Y. Bing, H. Liu, L. Zhang, D. Ghosh, and J. Zhang, Chem. Soc. Rev., 2010, 39(6), 2184-2202.
  35. D. Wang, H. L. Xin, R. Hovden, H. Wang, Y. Yu, D.A. Muller, F. J. DiSalvo, and H. D. Abruna, Nature Mater., 2013, 12, 81-87.
  36. M. Gummalla, S. C. Ball, D. A. Condit, S. Rasouli, K. Yu, P. J. Ferreira, D. J. Myers, and Z. Yang, Catalysts, 2015, 5(2), 926-948.
  37. S.-I. Choi, S.-U. Lee, W. Y. Kim, R. Choi, K. Hong, K. M. Nam, S. W. Han, and J. T. Park, ACS Appl. Mater. Interfaces, 2012, 4(11), 6228-6234.
  38. L. Bu, S. Guo, X. Zhang, X. Shen, D. Su, G. Lu, X. Zhu, J. Yao, J. Guo, and X. Huang, Nat. Commun., 2016, 7, 11850.
  39. D. Li, C. Wang, D. S. Strmcnik, D. V. Tripkovic, X. Sun, Y. Kang, M. Chi, J. D. Snyder, D. van der Vliet, Y. Tsai, V. R. Stamenkovic, S. Sun, and N. M. Markovic, Energy Environ. Sci., 2014, 7(12), 4061-4069.
  40. M. Shao, A. Peles, and K. Shoemaker, Nano Lett., 2011, 11(9), 3714-3719.
  41. F. J. Perez-Alonso, D. N. McCarthy, A. Nierhoff, P. Hernandez-Fernandez, C. Strebel, I. E. L. Stephens, J. H. Nielsen, and I. Chorkendorff, Angew. Chem. Int. Ed., 2012, 51(19), 4641-4643.
  42. Y. Xiong, L. Xiao, Y. Yang, F. J. DiSalvo, and H. D. Abruna, Chem. Mater., 2018, 30(5), 1532-1539.
  43. F. Wang, Q. Zhang, Z. Rui, J. Li, and J. Liu, ACS Appl. Mater. Interfaces, 2020, 12(27), 30381-30389.
  44. C. Cui, L. Gan, M. Heggen, S. Rudi, and P. Strasser, Nature Mater., 2013, 12, 765-771.
  45. C. Zhang, S. Y. Hwang, A. Trout, and Z. Peng, J. Am. Chem. Soc., 2014, 136(22), 7805-7808.
  46. B. Li, J. Wang, X. Gao, C. Qin, D. Yang, H. Lv, Q. Xiao, and C. Zhang, Nano Res., 2019, 12, 281-287.
  47. S.-I. Choi, S. Xie, M. Shao, J. H. Odell, N. Lu, H.-C. Peng, L. Protsailo, S. Guerrero, J. Park, X. Xia, J. Wang, M. J. Kim, and Y. Xia, Nano Lett., 2013, 13(7), 3420-3425.
  48. S. Kuhl, M. Gocyla, H. Heyen, S. Selve, M. Heggen, R. Dunin-Borkowski, and P. Strasser, J. Mater. Chem. A, 2019, 7(3), 1149-1159.
  49. C. Cui, L. Gan, H.-H. Li, S.-H. Yu, M. Heggen, and P. Strasser, Nano Lett., 2012, 12(11), 5885-5889.
  50. Q. Chang, Y. Xu, Z. Duan, F. Xiao, F. Fu, Y. Hong, J. Kim, S.-I. Choi, D. Su, and M. Shao, Nano Lett., 2017, 17(6), 3926-3931.
  51. X. Huang, Z. Zhao, L. Cao, Y. Chen, E. Zhu, Z. Lin, M. Li, A. Yan, A. Zettl, Y. M. Wang, X. Duan, T. Mueller, and Y. Huang, Science, 2015, 348(6240), 1230-1234.
  52. J. Choi, J.-H. Jang, C.-W. Roh, S. Yang, J. Kim, J. Lim, S. J. Yoo, and H. Lee, Appl. Catal. B: Environ., 2018, 225, 530-537.
  53. J. Zhang, H. Yang, J. Fang, and S. Zou, Nano Lett., 2010, 10(2), 638-644.
  54. J. Wu, J. Zhang, Z. Peng, S. Yang, F.T. Wagner, and H. Yang, J. Am. Chem. Soc., 2010, 132(14), 4984-4985.
  55. J. Lim, H. Shin, M. Kim, H. Lee, K.-S. Lee, Y. Kwon, D. Song, S. Oh, H. Kim, and E. Cho, Nano Lett., 2018, 18(4), 2450-2458.
  56. Y. Li, F. Quan, L. Chen, W. Zhang, H. Yu, and C. Chen, RSC Adv., 2014, 4(4), 1895-1899.
  57. J. Lim, K. Shin, J. Bak, J. Roh, S. Lee, G. Henkelman, and E. Cho, Chem. Mater., 2021, 33(22), 8895-8903.
  58. V. Beermann, M. Gocyla, E. Willinger, S. Rudi, M. Heggen, R. E. Dunin-Borkowski, M.-G. Willinger, and P. Strasser, Nano Lett., 2016, 16(3), 1719-1725.
  59. Y. Lu, L. Thia, A. Fisher, C.-Y. Jung, S. C. Yi, and X. Wang, Sci. China Mater., 2017, 60, 1109-1120.
  60. J. Choi, Y. Lee, J. Kim, and H. Lee, J. Power Sources, 2016, 307, 883-890.
  61. J. Park, J. Liu, H.-C. Peng, L. Figueroa-Cosme, S. Miao, S.-I. Choi, S. Bao, X. Yang, and Y. Xia, ChemSusChem, 2016, 9(16), 2209-2215.
  62. X. Zhao, S. Takao, K. Higashi, T. Kaneko, G. Samjeske, O. Sekizawa, T. Sakata, Y. Yoshida, T. Uruga, Y. Iwasawa, ACS Catal., 2017, 7(7), 4642-4654.
  63. F. Kong, Z. Ren, M. Norouzi Banis, L. Du, X. Zhou, G. Chen, L. Zhang, J. Li, S. Wang, M. Li, K. Doyle-Davis, Y. Ma, R. Li, A. young, L. yang, M. Makiewicz, Y. Tong, G. Yin, C. Du, J. Luo, and X. Sun, ACS Catal., 2020, 10(7), 4205-4214.
  64. E. Zhu, Y. Li, C.-Y. Chiu, X. Huang, M. Li, Z. Zhao, Y. Liu, X. Duan, and Y. Huang, Nano Res., 2016, 9, 149-157.
  65. X. Luo, Y. Guo, H. Zhou, H. Ren, S. Shen, G. Wei, and J. Zhang, Front. Energy, 2020, 14, 767-777.
  66. M. Gocyla, S. Kuehl, M. Shviro, H. Heyen, S. Selve, R. E. Dunin-Borkowski, M. Heggen, and P. Strasser, ACS Nano, 2018, 12(6), 5306-5311.
  67. V. Beermann, M. Gocyla, S. Ku?hl, E. Padgett, H. Schmies, M. Goerlin, N. Erini, M. Shviro, M. Heggen, R. E. Dunin-Borkowski, D. A. Muller, and P. Strasser, J. Am. Chem. Soc., 2017, 139(46), 16536-16547.
  68. C. Wang, M. Chi, D. Li, D. Strmcnik, D. van der Vliet, G. Wang, V. Komanicky, K.-C. Chang, A. P. Paulikas, D. Tripkovic, J. Pearson, K. L More, N. M. Markovic, and V. R. Stamenkovic, J. Am. Chem. Soc., 2011, 133(36), 14396-14403.
  69. C. Zhang, S. Y. Hwang, and Z. Peng, J. Mater. Chem. A, 2014, 2(46), 19778-19787.
  70. C. Chen, Y. Kang, Z. Huo, Z. Zhu, W. Huang, H. L. Xin, J. D. Snyder, D. Li, J. A. Herron, M. Mavrikakis, M. Chi, K. L. More, Y. Li, N. M. Markovic, G. A. Somorjai, P. Yang, and V. R. Stamenkovic, Science, 2014, 343(6177), 1339-1343.
  71. D. W. Myers, X. Lee, S. Ferrandon, M. Kariuki, and N. T. Krause, High-Throughput/Combinatorial Optimization of Low-Pt PEMFC Cathode Performance, Annual Merit Review, Arlington, Virginia, 2015. https://www.hydrogen.energy.gov/docs/hydrogenprogramlibraries/pdfs/review15/fc114_myers_2015_o.pdf
  72. Q. Jia, Z. Zhao, L. Cao, J. Li, S. Ghoshal, V. Davies, E. Stavitski, K. Attenkofer, Z. Liu, M. Li, X. Duan, S. Mukerjee, T. Mueller, and Y. Huang, Nano Lett., 2018, 18(2), 798-804.
  73. F. Dionigi, C. C. Weber, M. Primbs, M. Gocyla, A. M. Bonastre, C. Spori, H. Schmies, E. Hornberger, S. Kuhl, J. Drnec, M. Heggen, J. Sharman, R. E. DuninBorkowski, and P. Strasser, Nano Lett., 2019, 19(10), 6876-6885.
  74. F. Wang, X. Wang, Z. Guo, J. Yu, and H. Zhu, Energy Fuels, 2021, 35(4), 3368-3375.
  75. S. Kuhl, H. Heyen, and P. Strasser, ECS Trans., 2016, 75, 723.
  76. L. Cao and T. Mueller, Nano Lett., 2016, 16(12), 7748-7754.
  77. A. S. Haile, W. Yohannes, and Y. S. Mekonnen, RSC Adv., 2020, 10(46), 27346-27356.
  78. Z. Xu, H. Zhang, H. Zhong, Q. Lu, Y. Wang, and D. Su, Appl. Catal. B: Environ., 2012, 111-112, 264-270.
  79. J. Seo, D. Cha, K. Takanabe, J. Kubota, and K. Domen, Phys. Chem. Chem. Phys., 2014, 16(3), 895-898.
  80. M. Nesselberger, S. Ashton, J. C. Meier, I. Katsounaros, K. J. J. Mayrhofer, and M. Arenz, J. Am. Chem. Soc., 2011, 133(43), 17428-17433.