DOI QR코드

DOI QR Code

Recent Advances in Preparation and Supercapacitor Applications of Lignin-Derived Porous Carbon: A Review

  • Hae Woong Park (Emerging Materials R&D Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Hyo-Jun Ahn (Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Kwang Chul Roh (Emerging Materials R&D Division, Korea Institute of Ceramic Engineering and Technology)
  • 투고 : 2023.09.15
  • 심사 : 2023.11.24
  • 발행 : 2024.02.29

초록

Lignin-derived porous carbon has been identified as a versatile electrode material for supercapacitors (SCs) in energy storage systems (ESSs) owing to their intrinsic advantages including good electrical conductivity, low cost, high thermal and chemical stability, and high porosity, which stem from high surface, appropriate pore distribution, tailored morphologies, heterostructures, and diverse derivates. In this review, to provide a fundamental understanding of the properties of lignin, we first summarize the origin, historical development, and basic physicochemical properties. Next, we describe essential strategies for the preparation of lignin-derived porous carbon electrode materials and then highlight the latest advances in the utilization of lignin-derived porous carbon materials as advanced electrode materials. Finally, we provide some of our own insights into the major challenges and prospective research directions of lignin-derived porous carbon materials for supercapacitors. We believe that this review will provide general guidance for the design of next-generation electrode materials for supercapacitors.

키워드

과제정보

This work was supported by the Industrial Strategic Technology Development Program (20012763, Development of petroleum residue based porous adsorbent for industrial wastewater treatment) funded by the Ministry of Trade, Industry and Energy (MOTIE, Korea). This work was also supported by the Technology Innovation Program (RS-2022-00156080, Development of electrical double layer capacitors for power supplement of hydrogen forklift) funded by the Ministry of Trade, Industry and Energy (MOTIE, Korea).

참고문헌

  1. M. I. Hoffert, K. Caldeira, G. Benford, D. R. Criswell, C. Green, H. Herzog, A. K. Jain, H. S. Kheshgi, K. S. Lackner, J. S. Lewis, H. D. Lightfoot, W. Manheimer, J. C. Mankins, M. E. Mauel, L. J. Perkins, M. E. Schlesinger, T. Volk, and T. M. L. Wigley, Science, 2002, 298, 981-987.
  2. Z. Sun, B. Fridrich, A. de Santi, S. Elangovan, and K. Barta, Chem. Rev., 2018, 118(2), 614-678.
  3. A. J. Ragauskas, C. K. Williams, B. H. Davison, G. Britovsek, J. Cairney, C. A. Eckert, W. J. Frederick Jr, J. P. Hallett, D. J. Leak, and C. L. Liotta, J. R. Mielenz, R. Murphy, R. Templer, and T. Tschaplinski, Science, 2006, 311, 484-489.
  4. M. E. Himmel, S.-Y. Ding, D. K. Johnson, W. S. Adney, M. R. Nimlos, J. W. Brady, and T. D. Foust, Science, 2007, 315, 804-807.
  5. C. O. Tuck, E. Perez, I. T. Horvath, R. A. Sheldon, and M. Poliakoff, Science, 2012, 337, 695-699.
  6. P. McKendry, Bioresour. Technol., 2002, 83(1), 37-46.
  7. F. W. Lucas, R. G. Grim, S. A. Tacey, C. A. Downes, J. Hasse, A. M. Roman, C. A. Farberow, J. A. Schaidle, and A. Holewinski, ACS Energy Lett., 2021, 6(4), 1205-1270.
  8. A. Halba, S. K. Thengane, and P. Arora, Energy Fuels, 2023, 37(1), 19-35.
  9. M. Qiu, Q. Wang, Y. Chu, Z. Yuan, H. Song, Z. Chen, and Z. Wu, PLoS One, 2012, 7(4), e35906.
  10. H. Li, D. Yuan, C. Tang, S. Wang, J. Sun, Z. Li, T. Tang, F. Wang, H. Gong, and C. He, Carbon, 2016, 100, 151-157.
  11. H. Zhu, W. Luo, P. N. Ciesielski, Z. Fang, J. Zhu, G. Henriksson, M. E. Himmel, and L. Hu, Chem. Rev., 2016, 116(16), 9305-9374.
  12. M. Li, Q. Tu, X. Long, Q. Zhang, H. Jiang, C. Chen, S. Wang, and D. Min, Int. J. Biol. Macromol., 2021, 166, 1526-1534.
  13. Y. Liu, X. Wang, Q. Wu, W. Pei, M. J. Teo, Z. S. Chen, and C. Huang, Int. J. Biol. Macromol., 2022, 222, 994-1006.
  14. J. H. Park, H. H. Rana, J. Y. Lee, and H. S. Park, J. Mater. Chem. A, 2019, 7, 16962-16968.
  15. J. S. Yeon, S. H. Park, J. Suk, H. Lee, and H. S. Park, Chem. Eng. J., 2020, 382, 122946.
  16. D. Bajwa, G. Pourhashem, A. H. Ullah, and S. Bajwa, Ind. Crops Prod., 2019, 139, 111526.
  17. T. M. Budnyak, A. Slabon, and M. H. Sipponen, ChemSusChem, 2020, 13(17), 4344-4355.
  18. L. M. C. L. K. Curran, L. T. M. Pham, K. L. Sale, and B. A. Simmons, Biotechnol. Adv., 2022, 54, 107809.
  19. J. Zakzeski, P. C. A. Bruijnincx, A. L. Jongerius, and B. M. Weckhuysen, Chem. Rev., 2010, 110(6), 3552-3599.
  20. Y. Li, L. Shuai, H. Kim, A. H. Motagamwala, J. K. Mobley, F. Yue, Y. Tobimatsu, D. Havkin-Frenkel, F. Chen, R. A. Dixon, J. S. Luterbacher, J. A. Dumesic, and J. Ralph, Sci. Adv., 2018, 4, eaau2968.
  21. R. Rinaldi, R. Jastrzebski, M. T. Clough, J. Ralph, M. Kennema, P. C. Bruijnincx, and B. M. Weckhuysen, Angew. Chem. Int. Ed., 2016, 55(29), 8164-8215.
  22. D. Wang, S. H. Lee, J. Kim, and C. B. Park, ChemSusChem, 2020, 13(11), 2807-2827.
  23. J. Zhu, C. Yan, X. Zhang, C. Yang, M. Jiang, and X. Zhang, Prog. Energy Combust. Sci., 2020, 76, 100788.
  24. H. Liu, T. Xu, K. Liu, M. Zhang, W. Liu, H. Li, H. Du, and C. Si, Ind. Crops Prod., 2021, 165, 113425.
  25. G. Milczarek, Lignosulfonate-modified electrode for electrocatalytic reduction of acidic nitrite, in: Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, Wiley-VCH, New York, 2008, 20(2), 211-214.
  26. F. N. Ajjan, M. J. Jafari, T. Rebis, T. Ederth, and O. Inganas, J. Mater. Chem. A, 2015, 3, 12927-12937.
  27. G. Milczarek and O. Inganas, Science, 2012, 335, 1468-1471.
  28. F. G. Calvo-Flores and J. A. Dobado, ChemSusChem, 2010, 3(11), 1227-1235.
  29. E. Adler, Wood Sci. Technol., 1977, 11, 169-218.
  30. J. Erdmann, Justus Liebigs Ann. Chem., 1866, 138(1), 1-19.
  31. R. E. de Souza, F. J. B. Gomes, E. Brito, R. C. C. Lelis, L. A. R. Batalha, F. A. Santos, and D. L. Junior, J. Appl. Biotechnol. Bioeng, 2020, 7(3), 100-105.
  32. G. A. Smook, M. J. Kocurek, Joint Textbook Committee of the Paper Industry, Technical Association of the Pulp and Paper Industry, and Canadian Pulp and Paper Association, Handbook for pulp & paper technologists, TAPPI, 1982.
  33. P. Klason, G. Heidenstam, and E. Norlin, Ark. Kemi, Mineral. Geol, 1908, 3, 1-17.
  34. P. Klason, Berichte der deutschen chemischen Gesellschaft (A and B Series), 1920, 53(5), 706-711.
  35. F. E. Brauns, Econ. Bot., 1948, 2, 419-435.
  36. J. Wang, D. Zhang, and F. Chu, Adv. Mater., 2021, 33(28), 2001135.
  37. B. M. Upton and A. M. Kasko, Chem. Rev., 2016, 116(4), 2275-2306.
  38. S. Chatterjee and T. Saito, ChemSusChem, 2015, 8(23), 3941-3958.
  39. S.-C. Sun, Y. Xu, J.-L. Wen, T.-Q. Yuan, and R.-C. Sun, Green Chem., 2022, 24, 5709-5738.
  40. D. Wang, F. Shen, G. Yang, Y. Zhang, S. Deng, J. Zhang, Y. Zeng, T. Luo, and Z. Mei, Bioresour. Technol., 2018, 249, 117-124.
  41. K. H. Kim, T. Dutta, J. Sun, B. Simmons, and S. Singh, Green Chem., 2018, 20, 809-815.
  42. W. Schutyser, a. T. Renders, S. Van den Bosch, S.-F. Koelewijn, G. Beckham, and B. F. Sels, Chem. Soc. Rev., 2018, 47, 852-908.
  43. L. A. Z. Torres, A. L. Woiciechowski, V. O. de Andrade Tanobe, S. G. Karp, L. C. G. Lorenci, C. Faulds, and C. R. Soccol, J. Clean. Prod., 2020, 263, 121499.
  44. J. H. Lora and W. G. Glasser, J. Polym. Environ., 2002, 10, 39-48.
  45. W. O. S. Doherty, P. Mousavioun, and C. M. Fellows, Ind. Crops Prod., 2011, 33, 259-276.
  46. T. Aro and P. Fatehi, ChemSusChem, 2017, 10(9), 1861-1877.
  47. J. J. Meister, J. Macromol. Sci., 2002, 42(2), 235-289.
  48. P. Jedrzejczak, M. N. Collins, T. Jesionowski, and L. Klapiszewski, Int. J. Biol. Macromol., 2021, 187, 624-650.
  49. A. Vishtal and A. Kraslawski, BioResources, 2011, 6, 3547-3568.
  50. A. Kumar, Anushree, J. Kumar, and T. Bhaskar, J. Energy Inst., 2020, 93(1), 235-271.
  51. Y.-Y. Wang, X. Meng, Y. Pu, and A. J. Ragauskas, Polymers, 2020, 12(10), 2277.
  52. C. Wang, S. S. Kelley, and R. A. Venditti, ChemSusChem, 2016, 9(8), 770-783.
  53. M. Yanez-S, B. Matsuhiro, C. Nunez, S. Pan, C. A. Hubbell, P. Sannigrahi, and A. J. Ragauskas, Polym. Degrad. Stab., 2014, 110, 184-194.
  54. J. H. Lora and W. G. Glasser, J. Polym. Environ., 2002, 10, 39-48.
  55. O. Ioannidou and A. Zabaniotou, Renew. Sust. Energ. Rev., 2007, 11(9), 1966-2005.
  56. M. A. Yahya, Z. Al-Qodah, and C. W. Z. Ngah, Renew. Sust. Energ. Rev., 2015, 46, 218-235.
  57. A. M. Abioye and F. N. Ani, Renew. Sust. Energ. Rev., 2015, 52, 1282-1293.
  58. W. Zhang, J. Yin, C. Wang, L. Zhao, W. Jian, K. Lu, H. Lin, X. Qiu, and H. N. Alshareef, Small Methods, 2021, 5(11), 2100896.
  59. A. Aworn, P. Thiravetyan, and W. Nakbanpote, J. Anal. Appl. Pyrolysis, 2008, 82(2), 279-285.
  60. D. Saha, Y. Li, Z. Bi, J. Chen, J. K. Keum, D. K. Hensley, H. A. Grappe, H. M. Meyer III, S. Dai, and M. P. Paranthaman, Langmuir, 2014, 30, 900-910.
  61. R. A. P. Jayawickramage, K. J. Balkus, and J. P. Ferraris, Nanotechnology, 2019, 30, 355402.
  62. J. Hu, D. Shen, S. Wu, and R. Xiao, J. Anal. Appl. Pyrolysis, 2017, 127, 444-450.
  63. L.-Y. Hsu and H. Teng, Fuel Process. Technol., 2000, 64(1-3), 155-166.
  64. Z. Hu, M. Srinivasan, and Y. Ni, Carbon, 2001, 39(6), 877-886.
  65. H. Teng and T.-S. Yeh, Ind. Eng. Chem. Res., 1998, 37, 58-65.
  66. W. Zhang, M. Zhao, R. Liu, X. Wang, and H. Lin, Colloids Surf. Physicochem. Eng. Aspects, 2015, 484, 518-527.
  67. G. H. Lim, J.-W. Lee, J.-H. Choi, Y. C. Kang, and K. C. Roh, Mater. Chem. Phys., 2022, 284, 126073.
  68. Y. Wu, J.-P. Cao, Z.-Q. Hao, X.-Y. Zhao, Q.-Q. Zhuang, J.-S. Zhu, X.-Y. Wang, and X.-Y. Wei, Int. J. Electrochem. Sci., 2017, 12, 7227-7239.
  69. T. Zhao, A. Elzatahry, X. Li, and D. Zhao, Nat. Rev. Mater., 2019, 4, 775-791.
  70. Y. Song, J. Liu, K. Sun, and W. Xu, RSC Adv., 2017, 7, 48324-48332.
  71. C. Ma, L. Wu, M. Dirican, H. Cheng, J. Li, Y. Song, J. Shi, and X. Zhang, J. Colloid Interface Sci., 2021, 586, 412-422.
  72. Y. Xi, X. Liu, W. Xiong, H. Wang, X. Ji, F. Kong, G. Yang, and J. Xu, Ind. Crops Prod., 2021, 174, 114184.
  73. F. Fu, D. Yang, W. Zhang, H. Wang, and X. Qiu, Chem. Eng. J., 2020, 392, 123721.
  74. D.-P. Yang, Z. Li, M. Liu, X. Zhang, Y. Chen, H. Xue, E. Ye, and R. Luque, ACS Sustainable Chem. Eng., 2019, 7(5), 4564-4585.
  75. V. Pavlenko, S. Zoltowska, A. Haruna, M. Zahid, Z. Mansurov, Z. Supiyeva, A. Galal, K. Ozoemena, Q. Abbas, and T. Jesionowski, Mater. Sci. Eng. R Rep., 2022, 149, 100682.
  76. H. Li, Y. Zhao, S. Liu, P. Li, D. Yuan, and C. He, Microporous Mesoporous Mater., 2020, 297, 109960.
  77. F. Souto, V. Calado, and N. Pereira, Mater. Res. Express, 2018, 5, 072001.
  78. J. F. Kadla, S. Kubo, R. A. Venditti, R. D. Gilbert, A. L. Compere, and W. Griffith, Carbon, 2002, 40(15), 2913-2920.
  79. M. Zhu, H. Liu, Q. Cao, H. Zheng, D. Xu, H. Guo, S. Wang, Y. Li, and J. Zhou, ACS Sustainable Chem. Eng., 2020, 8(34), 12831-12841.
  80. Z. Dai, P.-G. Ren, W. He, X. Hou, F. Ren, Q. Zhang, and Y.-L. Jin, Renew. Energy, 2020, 162, 613-623.
  81. S. Paunonen, BioResources, 2013, 8(2), 3098-3121.
  82. Q. Cao, M. Zhu, J. Chen, Y. Song, Y. Li, and J. Zhou, ACS Appl. Mater. Interfaces, 2019, 12(1), 1210-1221.
  83. J. Wei, S. Geng, O. Pitkanen, T. Jarvinen, K. Kordas, and K. Oksman, ACS Appl. Energy Mater., 2020, 3(4), 3530-3540. 
  84. R. D. Ortiz-Olivares, D. R. Lobato-Peralta, D. Arias, J. A. Okolie, A. K. Cuentas-Gallegos, P. Sebastian, A. R. Mayer, and P. U. Okoye, J. Energy Storage, 2022, 55, 105447.
  85. W. Zhang, X. Qiu, C. Wang, L. Zhong, F. Fu, J. Zhu, Z. Zhang, Y. Qin, D. Yang, and C. C. Xu, Carbon Res., 2022, 1, 14.
  86. M. Molina-Sabio, M. Gonzalez, F. Rodriguez-Reinoso, and A. Sepulveda-Escribano, Carbon, 1996, 34(4), 505-509.
  87. D.-W. Kim, H.-S. Kil, K. Nakabayashi, S.-H. Yoon, and J. Miyawaki, Carbon, 2017, 114, 98-105.
  88. J. Yin, W. Zhang, N. A. Alhebshi, N. Salah, and H. N. Alshareef, Small Methods, 2020, 4(3), 1900853.
  89. S. K. Park, S. H. Kwon, S. G. Lee, M. S. Choi, D. H. Suh, P. Nakhanivej, H. Lee, and H. S. Park, ACS Energy Lett., 2018, 3(3), 724-732.
  90. S. Nizamuddin, H. A. Baloch, G. J. Griffin, N. M. Mubarak, A. W. Bhutto, R. Abro, S. A. Mazari, and B. S. Ali, Renew. Sust. Energ. Rev., 2017, 73, 1289-1299.
  91. A. Jain, R. Balasubramanian, and M. P. Srinivasan, Chem. Eng. J., 2016, 283, 789-805.
  92. K. Chen, Z.-J. He, Z.-H. Liu, A. J. Ragauskas, B.-Z. Li, and Y.-J. Yuan, ChemSusChem, 2022, 15, e202201284.
  93. S. K. Park, H. Lee, M. S. Choi, D. H. Suh, P. Nakhanivej, and H. S. Park, Energy Storage Mater., 2018, 12, 331-340.
  94. P. Schlee, O. Hosseinaei, D. Baker, A. Landmer, P. Tomani, M. J. Mostazo-Lopez, D. Cazorla-Amoros, S. Herou, and M.-M. Titirici, Carbon, 2019, 145, 470-480.
  95. J. L. Espinoza-Acosta, P. I. Torres-Chavez, J. L. Olmedo-Martinez, A. Vega-Rios, S. Flores-Gallardo, and E. A. Zaragoza-Contreras, J. Energy Chem., 2018, 27(5), 1422-1438.
  96. K. Namsheer and C. S. Rout, RSC Adv., 2021, 11, 5659-5697.
  97. Y. Huang, J. Liang, and Y. Chen, Small, 2012, 8(12), 1805-1834.
  98. M. A. A. M. Abdah, N. H. N. Azman, S. Kulandaivalu, and Y. Sulaiman, Mater. Des., 2020, 186, 108199.
  99. F. Chen, W. Zhou, H. Yao, P. Fan, J. Yang, Z. Fei, and M. Zhong, Green Chem., 2013, 15, 3057-3063.
  100. X. Ma, P. Kolla, Y. Zhao, A. L. Smirnova, and H. Fong, J. Power Sources, 2016, 325, 541-548.
  101. B. Yu, A. Gele, and L. Wang, Int. J. Biol. Macromol., 2018, 118, 478-484.
  102. M. Zhou, A. Bahi, Y. Zhao, L. Lin, F. Ko, P. Servati, S. Soltanian, P. Wang, Y. Yu, Q. Wang, and Z. Cai, Chem. Eng. J., 2021, 409, 128214.
  103. C. Han, H. Li, R. Shi, T. Zhang, J. Tong, J. Li, and B. Li, J. Mater. Chem. A, 2019, 7, 23378-23415.
  104. S. Admassie, A. Elfwing, E. W. Jager, Q. Bao, and O. Inganas, J. Mater. Chem. A, 2014, 2, 1974-1979.
  105. S. Admassie, F. N. Ajjan, A. Elfwing, and O. Inganas, Mater. Horiz., 2016, 3, 174-185.
  106. S. Leguizamon, K. P. Diaz-Orellana, J. Velez, M. C. Thies, and M. E. Roberts, J. Mater. Chem. A, 2015, 3, 11330-11339.
  107. F. N. Ajjan, N. Casado, T. Rebis, A. Elfwing, N. Solin, D. Mecerreyes, and O. Inganas, J. Mater. Chem. A, 2016, 4, 1838-1847.
  108. Z. Yhobu, A. Siddiqa, M. Padaki, S. Budagumpi, and N. D. H., Energy Fuels, 2022, 36(24), 14625-14656.
  109. A. M. Navarro-Suarez, N. Casado, J. Carretero-Gonzalez, D. Mecerreyes, and T. Rojo, J. Mater. Chem. A, 2017, 5, 7137-7143.
  110. Z. Cai, C. Jiang, X. Xiao, Y. Zhang, and L. Liang, IOP Conf. Ser.: Mater. Sci. Eng., 2018, 359, 012046.
  111. W. Ye, X. Li, J. Luo, X. Wang, and R. Sun, Ind. Crops Prod., 2017, 109, 410-419.
  112. L. Cui, H. Xu, Y. An, M. Xu, Z. Lei, and X. Jin, Adv. Powder Technol., 2022, 33(6), 103571.
  113. W. Zhang, H. Lin, Z. Lin, J. Yin, H. Lu, D. Liu, and M. Zhao, ChemSusChem, 2015, 8(12), 2114-2122.
  114. W. Liu, Y. Yao, O. Fu, S. Jiang, Y. Fang, Y. Wei, and X. Lu, RSC Adv., 2017, 7, 48537-48543.
  115. C. Jiang, Z. Wang, J. Li, Z. Sun, Y. Zhang, L. Li, K.-S. Moon, and C. Wong, Electrochim. Acta, 2020, 353, 136482.
  116. F. Fu, D. Yang, H. Wang, Y. Qian, F. Yuan, J. Zhong, and X. Qiu, ACS Sustaiable Chem. Eng., 2019, 7(19), 16419-16427.
  117. L. Zhu, L. Wu, Y. Sun, M. Li, J. Xu, Z. Bai, G. Liang, L. Liu, D. Fang, and W. Xu, RSC Adv., 2014, 4, 6261-6266.
  118. H. Xu, H. Jiang, X. Li, and G. Wang, RSC Adv., 2015, 5, 76116-76121.