DOI QR코드

DOI QR Code

The Effect of Obstacle Number, Shape and Blockage Degree in Flow Field of PEMFC on its Performance

  • Zongxi Zhang (School of Mechanical and Electronic Engineering, Shandong Jianzhu University) ;
  • Xiang Fan (School of Mechanical and Electronic Engineering, Shandong Jianzhu University) ;
  • Wenhao Lu (School of Mechanical and Electronic Engineering, Shandong Jianzhu University) ;
  • Jian Yao (School of Mechanical and Electronic Engineering, Shandong Jianzhu University) ;
  • Zhike Sui (School of Mechanical and Electronic Engineering, Shandong Jianzhu University)
  • 투고 : 2023.06.19
  • 심사 : 2023.09.11
  • 발행 : 2024.02.29

초록

Proton exchange membrane fuel cell (PEMFC) has received extensive attention as it is the most common hydrogen energy utilization device. This research not only investigated the effect of obstacle number and shape on PEMFC performance, but also studied the effect of the blockage degree in the channel of PEMFC on its performance. It was found that compared with traditional scheme, longitudinally distributed obstacles scheme can significantly promote reactants transfer to catalyst layer, and the blockage degree in the channel effect PEMFC performance most. The scheme with 10 rectangular obstacles in single channel and 60% channel blockage had the best output performance and the most uniform distribution of reactants and products. Obstacle height distribution can significantly affect PEMFC performance, the blockage degree in the whole basin was large, particularly as the channel was blocked to higher degree in region 2 and region 3, higher net power density and better mass transfer effect can be obtained. Among them, the fuel cell with the blockage degree of 40%, 60% and 60% in region 1, region 2 and region 3 have the best PEMFC output performance and mass transfer, the net power density was 29.8% higher than that of traditional scheme.

키워드

과제정보

The research was supported by the projects of Formation mechanism and emission reduction technology of carbonyl emissions from DMDF combustion (Natural Science Foundation of Shandong Province, Grant No. ZR2020QE203).

참고문헌

  1. Y. Liu, H. Guo, and X. Ouyang, Strategic Study of CAE, 2021, 23(4), 162-171.
  2. Q. Hassan, A. Z. Sameen, H. M. Salman, M. Jaszczur, A.K. Al-Jiboory, J. Energy Storage, 2023, 72, Part B, 108404.
  3. S. Chandrasekaran, J. S. Chung, E. J. Kim, and S. H. Hur, J. Electrochem. Sci. Technol., 2016, 7(1), 1-12.
  4. A. Lim, M. K. Cho, S. Y. Lee, H.-J. Kim, S. J. Yoo, Y.-E. Sung, J. H. Hang, and H. S. Park, J. Electrochem. Sci. Technol., 2017, 8(4), 265-273.
  5. W. Hwang and Y.-E. Sung, J. Electrochem. Sci. Technol., 2023, 14(2), 120-130.
  6. Q. Liu, F. Lan, J. Chen, C. Zeng, and J. Wang, J. Power Sources, 2022, 517, 230723.
  7. K. Lim, C. Kim, R. Park, A. Alam, and H. Ju, Chem. Eng. J., 2023, 475, 146147.
  8. Z. Xia, H. Chen, T. Zhang, and P. Pei, Int. J. Hydrogen Energy, 2022, 47(26), 13076-13086.
  9. Q. Zhao, H. Guo, F. Ye, and C. Ma, CIESC J., 2020, 71(5), 1943-1963.
  10. Y. J. Liu and B. Chen, Automotive Engineering, 2021, 43(06), 799-807.
  11. H. Chen, H. Guo, F. Ye, C. F. Ma, Q. Liao, and X. Zhu, Int. J. Energy Res., 2019, 43(7), 2910-2929.
  12. J. Yao, F. Yan, and X. Pei, Chem. Pap., 2022, 77, 935-946.
  13. H. Heidary and M. J. Kermani, Int. Commun. Heat Mass Transf., 2012, 39(1), 112-120.
  14. H. Heidary, M. J. Kermani, and B. Dabir, Energy Convers. Manag., 2016, 124, 51-60.
  15. H. C. Liu, W. M. Yan, C. Y. Song, F. Chen, and H. S. Chu, J. Power Sources, 2006, 158(1), 78-87.
  16. S. Abdulla and V. S. Patnaikuni, Int. J. Hydrogen Energy, 2020, 45(48), 25970-25984.
  17. Y. Huang, S. Jiangnan, D. Xinyue, C. Su, Z. Xiang, M. Zongpeng, C. Lunjun, and W. Yanli, Energy, 2023, 266, 126448.
  18. Z. Zhang, X. Fan, W. Lu, and J. Yao, Ionics, 2023, 29, 4125-4145.
  19. E. Afshari and N. B. Houreh, Int. J. Mod. Phys. B, 2014, 28(16), 1450097.
  20. S.-W. Perng and H.-W. Wu, Appl. Energy, 2015, 143, 81-95.
  21. S.-W. Perng and H.-W. Wu, J. Power Sources, 2008, 175(2), 806-816.
  22. B. Amani and A. Zanj, Int. Commun. Heat Mass Transf., 2023, 140, 106558.
  23. Y. Cai, D. Wu, J. Sun, and B. Chen, Energy, 2021, 222, 119951.
  24. A. A. Ebrahimzadeh, I. Khazaee, and A. Fasihfar, Int. J. Heat Mass Transfer, 2019, 141, 891-904.
  25. H. Guo, H. Chen, and C. F. Ma, Int. J. Energy Res., 2019, 43(7), 2737-2755.
  26. Y. Yin, S. Wu, Y. Qin, O. N. Otoo, and J. Zhang, Appl. Energy, 2020, 271, 115257.
  27. Y. Wang, C. Guan, P. Zhang, T. Zhu, S. Wnag, Y. Zhu, and X. Wang, J. Clean. Prod., 2022, 375, 134187.
  28. F. Tiss, R. Chouikh, and A. Guizani, Energy Convers. Manag., 2014, 80, 23-38.
  29. H. Heidary, M. J. Kermani, and B. Dabir, Energy Convers. Manag., 2016, 124, 51-60.
  30. H. Chen, H. Guo, F. Ye, and C. F. Ma, Int. J. Hydrogen Energy, 2021, 46(57), 29443-29458.
  31. M. Karthikeyan, P. Karthikeyan, M. Muthukumar, V. M. Kannan, K. Thanarajan, T. Maiyalagan, C.-W. Hong, V. R. Jothi, and S.-C. Yi, Int. J. Hydrogen Energy, 2020, 45(13), 7863-7872.
  32. A. Nishimura, K. Toyoda, Y. Kojima, S. Ito, and E. Hu, Energies, 2021, 14(24), 8256.
  33. J. Yao, F. Yan, and X. Pei, J. Electrochem. Sci. Technol., 2023, 14(1), 38-50.
  34. H. Heidary, M. J. Kermani, A. K. Prasad, S. G. Advani, and B. Dabir, Int. J. Hydrogen Energy, 2017, 42(4), 2265-2277.
  35. L. Xing, M. Mamlouk, and K. Scott, Energy, 2013, 61, 196-210.
  36. L. Xing, S. Du, R. Chen M. Mamlouk, and K. Scott, Energy, 2016, 96, 80-95.
  37. J. Song and Z. Huang, Journal of Guizhou University (Natural Sciences), 2021, 38(6), 61-66.
  38. Q. Tan, H. Lei, and Z. Liu, Int. J. Hydrogen Energy, 2022, 47(23), 11975-11990.
  39. C. Chen, C. Wang, and Z. Zhang, Energy Conversion and Management, 2023, 276, 116532.
  40. Q. Xie and M. Zheng, Processes, 2021, 9(9), 1526.
  41. L. Xing, P. K. Das, X. Song, M. Mamlouk, and K. Scott, Appl. Energy, 2015, 138, 242-257.
  42. F. Mojica, M. A. Rahman, M. Sarker, D. S. Hussey, D. L. Jacobson, J. M. LaManna, and P.-Y. A. Chuang, Energy Convers. Manag., 2021, 237, 114095.
  43. L. Fan, Z. Niu, and G. Zhang, Energy Convers. Manag., 2018, 171, 1813-1821.
  44. Y. Cai, D. Wu, J. Sun, and B. Chen, Energy, 2021, 222, 119951.
  45. A. Hamrang, M. Abdollahzadeh, M. J. Kermani, S. M. Rahgoshay, Int. J. Heat Mass Transf., 2022, 186, 122475.
  46. Y. Yin, X. Wang, X. Shangguan, J. Zhang, and Y. Qin, Int. J. Hydrogen Energy, 2018, 43(16), 8048-8062.
  47. S. G. Kandlikar, M. L. Garofalo, and Z. Lu, Fuel Cells, 2011, 11(6), 814-823.