DOI QR코드

DOI QR Code

THE SECONDARY UPSILON FUNCTION OF L-SPACE KNOTS IS A CONCAVE CONJUGATE

  • Masakazu Teragaito (International Institute for Sustainability with Knotted Chiral Meta Mater (WPI-SKCM2) Hiroshima University)
  • 투고 : 2023.03.10
  • 심사 : 2023.11.27
  • 발행 : 2024.03.31

초록

For a knot in the 3-sphere, the Upsilon invariant is a piecewise linear function defined on the interval [0, 2]. It is known that this invariant of an L-space knot is the Legendre-Fenchel transform (or, convex conjugate) of a certain gap function derived from the Alexander polynomial. To recover an information lost in the Upsilon invariant, Kim and Livingston introduced the secondary Upsilon invariant. In this note, we prove that the secondary Upsilon invariant of an L-space knot is a concave conjugate of a restricted gap function. Also, a similar argument gives an alternative proof of the above fact that the Upsilon invariant of an L-space knot is a convex conjugate of a gap function.

키워드

과제정보

We would like to thank the referee for careful reading.

참고문헌

  1. A. Alfieri, Upsilon-type concordance invariants, Algebr. Geom. Topol. 19 (2019), no. 7, 3315-3334. https://doi.org/10.2140/agt.2019.19.3315
  2. S. Allen, Using secondary upsilon invariants to rule out stable equivalence of knot complexes, Algebr. Geom. Topol. 20 (2020), no. 1, 29-48. https://doi.org/10.2140/agt.2020.20.29
  3. M. Borodzik and M. Hedden, The Υ function of L-space knots is a Legendre transform, Math. Proc. Cambridge Philos. Soc. 164 (2018), no. 3, 401-411. https://doi.org/10.1017/S030500411700024X
  4. M. Borodzik and C. Livingston, Heegaard Floer homology and rational cuspidal curves, Forum Math. Sigma 2 (2014), Paper No. e28, 23 pp. https://doi.org/10.1017/fms.2014.28
  5. M. Hedden and L.Watson, On the geography and botany of knot Floer homology, Selecta Math. (N.S.) 24 (2018), no. 2, 997-1037. https://doi.org/10.1007/s00029-017-0351-5
  6. S.-G. Kim and C. Livingston, Secondary upsilon invariants of knots, Q. J. Math. 69 (2018), no. 3, 799-813. https://doi.org/10.1093/qmath/hax062
  7. C. Livingston, Notes on the knot concordance invariant upsilon, Algebr. Geom. Topol. 17 (2017), no. 1, 111-130. https://doi.org/10.2140/agt.2017.17.111
  8. P. Ozsv'ath, A. Stipsicz, and Z. Szab'o, Concordance homomorphisms from knot Floer homology, Adv. Math. 315 (2017), 366-426. https://doi.org/10.1016/j.aim.2017.05.017
  9. P. Ozsv'ath and Z. Szab'o, Knot Floer homology and the four-ball genus, Geom. Topol. 7 (2003), 615-639. https://doi.org/10.2140/gt.2003.7.615
  10. P. Ozsv'ath and Z. Szab'o, Holomorphic disks and knot invariants, Adv. Math. 186 (2004), no. 1, 58-116. https://doi.org/10.1016/j.aim.2003.05.001
  11. P. Ozsv'ath and Z. Szab'o, On knot Floer homology and lens space surgeries, Topology 44 (2005), no. 6, 1281-1300. https://doi.org/10.1016/j.top.2005.05.001
  12. S. Wang, Semigroups of L-space knots and nonalgebraic iterated torus knots, Math. Res. Lett. 25 (2018), no. 1, 335-346. https://doi.org/10.4310/mrl.2018.v25.n1.a15
  13. X. Xu, On the secondary Upsilon invariant, Algebr. Geom. Topol. 21 (2021), no. 4, 1661-1676. https://doi.org/10.2140/agt.2021.21.1661