DOI QR코드

DOI QR Code

Tivozanib-induced activation of the mitochondrial apoptotic pathway and suppression of epithelial-to-mesenchymal transition in oral squamous cell carcinoma

  • Nak-Eun Choi (Department of Oral Anatomy, School of Dentistry, Pusan National University) ;
  • Si-Chan Park (Department of Oral Anatomy, School of Dentistry, Pusan National University) ;
  • In-Ryoung Kim (Department of Oral Anatomy, School of Dentistry, Pusan National University)
  • 투고 : 2024.01.10
  • 심사 : 2024.02.13
  • 발행 : 2024.05.01

초록

The potential of tivozanib as a treatment for oral squamous cell carcinoma (OSCC) was explored in this study. We investigated the effects of tivozanib on OSCC using the Ca9-22 and CAL27 cell lines. OSCC is a highly prevalent cancer type with a significant risk of lymphatic metastasis and recurrence, which necessitates the development of innovative treatment approaches. Tivozanib, a vascular endothelial growth factor receptor inhibitor, has shown efficacy in inhibiting neovascularization in various cancer types but has not been thoroughly studied in OSCC. Our comprehensive assessment revealed that tivozanib effectively inhibited OSCC cells. This was accompanied by the suppression of Bcl-2, a reduction in matrix metalloproteinase levels, and the induction of intrinsic pathway-mediated apoptosis. Furthermore, tivozanib contributed to epithelial-to-mesenchymal transition (EMT) inhibition by increasing E-cadherin levels while decreasing N-cadherin levels. These findings highlight the substantial anticancer potential of tivozanib in OSCC and thus its promise as a therapeutic option. Beyond reducing cell viability and inducing apoptosis, the capacity of tivozanib to inhibit EMT and modulate key proteins presents the possibility of a paradigm shift in OSCC treatment.

키워드

과제정보

The authors extend their deepest appreciation to all the participants for their invaluable support for this study.

참고문헌

  1. Borse V, Konwar AN, Buragohain P. Oral cancer diagnosis and perspectives in India. Sens Int. 2020;1:100046.
  2. Shahoumi LA. Oral cancer stem cells: therapeutic implications and challenges. Front Oral Health. 2021;2:685236.
  3. Pisani P, Airoldi M, Allais A, Aluffi Valletti P, Battista M, Benazzo M, Briatore R, Cacciola S, Cocuzza S, Colombo A, Conti B, Costanzo A, Della Vecchia L, Denaro N, Fantozzi C, Galizia D, Garzaro M, Genta I, Iasi GA, Krengli M, et al. Metastatic disease in head & neck oncology. Acta Otorhinolaryngol Ital. 2020;40(SUPPL. 1):S1-S86.
  4. Kerawala C, Roques T, Jeannon JP, Bisase B. Oral cavity and lip cancer: United Kingdom national multidisciplinary guidelines. J Laryngol Otol. 2016;130:S83-S89.
  5. Voss JO, Freund L, Neumann F, Mrosk F, Rubarth K, Kreutzer K, Doll C, Heiland M, Koerdt S. Prognostic value of lymph node involvement in oral squamous cell carcinoma. Clin Oral Investig. 2022;26:6711-6720.
  6. Opferman JT, Kothari A. Anti-apoptotic BCL-2 family members in development. Cell Death Differ. 2018;25:37-45.
  7. Kashyap D, Garg VK, Goel N. Intrinsic and extrinsic pathways of apoptosis: role in cancer development and prognosis. Adv Protein Chem Struct Biol. 2021;125:73-120.
  8. Jan R, Chaudhry GE. Understanding apoptosis and apoptotic pathways targeted cancer therapeutics. Adv Pharm Bull. 2019;9:205-218.
  9. O'Brien LE. Tissue homeostasis and non-homeostasis: from cell life cycles to organ states. Annu Rev Cell Dev Biol. 2022;38:395-418.
  10. Dai Y, Jin F, Wu W, Kumar SK. Cell cycle regulation and hematologic malignancies. Blood Sci. 2019;1:34-43.
  11. Matthews HK, Bertoli C, de Bruin RAM. Cell cycle control in cancer. Nat Rev Mol Cell Biol. 2022;23:74-88.
  12. Assani G, Zhou Y. Effect of modulation of epithelial-mesenchymal transition regulators Snail1 and Snail2 on cancer cell radiosensitivity by targeting of the cell cycle, cell apoptosis and cell migration/invasion. Oncol Lett. 2019;17:23-30.
  13. Das V, Bhattacharya S, Chikkaputtaiah C, Hazra S, Pal M. The basics of epithelial-mesenchymal transition (EMT): a study from a structure, dynamics, and functional perspective. J Cell Physiol. 2019;234:14535-14555.
  14. Huang Y, Hong W, Wei X. The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis. J Hematol Oncol. 2022;15:129.
  15. Gaianigo N, Melisi D, Carbone C. EMT and treatment resistance in pancreatic cancer. Cancers (Basel). 2017;9:122.
  16. Van den Eynde C, De Clercq K, Van Bree R, Luyten K, Annibali D, Amant F, Han S, Van Nieuwenhuysen E, Baert T, Peeraer K, Voets T, Van Gorp T, Vriens J. TRP channel expression correlates with the epithelial-mesenchymal transition and high-risk endometrial carcinoma. Cell Mol Life Sci. 2021;79:26.
  17. Momeny M, Moghaddaskho F, Gortany NK, Yousefi H, Sabourinejad Z, Zarrinrad G, Mirshahvaladi S, Eyvani H, Barghi F, Ahmadinia L, Ghazi-Khansari M, Dehpour AR, Amanpour S, Tavangar SM, Dardaei L, Emami AH, Alimoghaddam K, Ghavamzadeh A, Ghaffari SH. Blockade of vascular endothelial growth factor receptors by tivozanib has potential anti-tumour effects on human glioblastoma cells. Sci Rep. 2017;7:44075.
  18. Passi I, Billowria K, Kumar B, Chawla PA. Tivozanib: a new hope for treating renal cell carcinoma. Anticancer Agents Med Chem. 2023;23:562-570.
  19. Schiavoni V, Campagna R, Pozzi V, Cecati M, Milanese G, Sartini D, Salvolini E, Galosi AB, Emanuelli M. Recent advances in the management of clear cell renal cell carcinoma: novel biomarkers and targeted therapies. Cancers (Basel). 2023;15:3207.
  20. Moore JD, Yang J, Truant R, Kornbluth S. Nuclear import of Cdk/cyclin complexes: identification of distinct mechanisms for import of Cdk2/cyclin E and Cdc2/cyclin B1. J Cell Biol. 1999;144:213-224.
  21. Qian S, Wei Z, Yang W, Huang J, Yang Y, Wang J. The role of BCL2 family proteins in regulating apoptosis and cancer therapy. Front Oncol. 2022;12:985363.
  22. Anaya-Saavedra G, Ramirez-Amador V, Irigoyen-Camacho ME, Garcia-Cuellar CM, Guido-Jimenez M, Mendez-Martinez R, Garcia-Carranca A. High association of human papillomavirus infection with oral cancer: a case-control study. Arch Med Res. 2008;39:189-197.
  23. Ram H, Sarkar J, Kumar H, Konwar R, Bhatt ML, Mohammad S. Oral cancer: risk factors and molecular pathogenesis. J Maxillofac Oral Surg. 2011;10:132-137.
  24. Bugshan A, Farooq I. Oral squamous cell carcinoma: metastasis, potentially associated malignant disorders, etiology and recent advancements in diagnosis. F1000Res. 2020;9:229.
  25. Cao LM, Zhong NN, Li ZZ, Huo FY, Xiao Y, Liu B, Bu LL. Lymph node metastasis in oral squamous cell carcinoma: Where we are and where we are going. Clin Transl Discov. 2023;3:e227.
  26. Canino C, Perrone L, Bosco E, Saltalamacchia G, Mosca A, Rizzo M, Porta C. Targeting angiogenesis in metastatic renal cell carcinoma. Expert Rev Anticancer Ther. 2019;19:245-257.
  27. Momeny M, Sabourinejad Z, Zarrinrad G, Moghaddaskho F, Eyvani H, Yousefi H, Mirshahvaladi S, Poursani EM, Barghi F, Poursheikhani A, Dardaei L, Bashash D, Ghazi-Khansari M, Tavangar SM, Dehpour AR, Yaghmaie M, Alimoghaddam K, Ghavamzadeh A, Ghaffari SH. Anti-tumour activity of tivozanib, a paninhibitor of VEGF receptors, in therapy-resistant ovarian carcinoma cells. Sci Rep. 2017;7:45954.
  28. Pietenpol JA, Stewart ZA. Cell cycle checkpoint signaling: cell cycle arrest versus apoptosis. Toxicology. 2002;181-182:475-481.
  29. Raleigh JM, O'Connell MJ. The G(2) DNA damage checkpoint targets both Wee1 and Cdc25. J Cell Sci. 2000;113:1727-1736.
  30. Rogalinska M. Alterations in cell nuclei during apoptosis. Cell Mol Biol Lett. 2002;7:995-1018.
  31. Lucken-Ardjomande S, Martinou JC. Regulation of Bcl-2 proteins and of the permeability of the outer mitochondrial membrane. C R Biol. 2005;328:616-631.
  32. Gottlieb E, Armour SM, Harris MH, Thompson CB. Mitochondrial membrane potential regulates matrix configuration and cytochrome c release during apoptosis. Cell Death Differ. 2003;10:709-717.
  33. Sivandzade F, Bhalerao A, Cucullo L. Analysis of the mitochondrial membrane potential using the cationic JC-1 dye as a sensitive fluorescent probe. Bio Protoc. 2019;9:e3128.
  34. Santucci R, Sinibaldi F, Cozza P, Polticelli F, Fiorucci L. Cytochrome c: an extreme multifunctional protein with a key role in cell fate. Int J Biol Macromol. 2019;136:1237-1246.
  35. Sevrioukova IF. Apoptosis-inducing factor: structure, function, and redox regulation. Antioxid Redox Signal. 2011;14:2545-2579.
  36. Noguti J, De Moura CF, De Jesus GP, Da Silva VH, Hossaka TA, Oshima CT, Ribeiro DA. Metastasis from oral cancer: an overview. Cancer Genomics Proteomics. 2012;9:329-335.
  37. Chen T, You Y, Jiang H, Wang ZZ. Epithelial-mesenchymal transition (EMT): a biological process in the development, stem cell differentiation, and tumorigenesis. J Cell Physiol. 2017;232:3261-3272.
  38. Guarino M, Rubino B, Ballabio G. The role of epithelial-mesenchymal transition in cancer pathology. Pathology. 2007;39:305-318.
  39. Hu QP, Kuang JY, Yang QK, Bian XW, Yu SC. Beyond a tumor suppressor: soluble E-cadherin promotes the progression of cancer. Int J Cancer. 2016;138:2804-2812.
  40. Luo SL, Xie YG, Li Z, Ma JH, Xu X. E-cadherin expression and prognosis of oral cancer: a meta-analysis. Tumour Biol. 2014;35:5533-5537.
  41. Marla V, Hegde V, Shrestha A. Relationship of angiogenesis and oral squamous cell carcinoma. Kathmandu Univ Med J (KUMJ). 2015;13:178-185.
  42. Foda HD, Zucker S. Matrix metalloproteinases in cancer invasion, metastasis and angiogenesis. Drug Discov Today. 2001;6:478-482.
  43. Takahashi S. Vascular endothelial growth factor (VEGF), VEGF receptors and their inhibitors for antiangiogenic tumor therapy. Biol Pharm Bull. 2011;34:1785-1788.
  44. Park SJ, Lee N, Jeong CH. ACY-241, a histone deacetylase 6 inhibitor, suppresses the epithelial-mesenchymal transition in lung cancer cells by downregulating hypoxia-inducible factor-1 alpha. Korean J Physiol Pharmacol. 2024;28:83-91.