DOI QR코드

DOI QR Code

Effect of Washing Solvent and Washing Method on Flexural Strength of 3D-Printed Temporary Resin Material

세척 용액 및 세척 방법이 3D 프린팅 임시수복용 레진의 굴곡강도에 미치는 영향

  • Hae-Bom Kim (Dept. of Dental Laboratory Science, College of Health Science, Catholic University of Pusan) ;
  • Jae-Won Choi (Dept. of Dental Laboratory Science, College of Health Science, Catholic University of Pusan)
  • 김해봄 (부산가톨릭대학교 치기공학과) ;
  • 최재원 (부산가톨릭대학교 치기공학과)
  • Received : 2024.02.29
  • Accepted : 2024.04.09
  • Published : 2024.04.30

Abstract

The purpose of this study was to evaluate the effect of different washing solvents and washing methods on the flexural strength of 3D printed temporary resin. A bar(25 × 2 × 2 mm) was produced with a layer thickness of 50 ㎛ using an LCD-type 3D printer and divided into 15 groups(n = 10, each) according to washing solution(IPA; 99% isopropyl alcohol, TPM; 93% Tripropylene glycol monomethylether, ETL; Ethanol, TWC; Twin 3D Cleaner, and DNC; DIO navi Cleaner) and washing method(Dip; Dip washing, Ultra; Ultrasonic washing, and Auto; Automated washing). All groups were washed for 5 minutes, and post-cured for 5 minutes using a UV LED light curing machine. The Flexural strength was measured using a three-point bending test using a universal testing machine. For statistical analysis, one-way ANOVA, Tukey HSD post hoc test, Kruskal-Wallis test and post-hoc by Bonferroni-Dunn test(𝛼=.05) were performed depending on whether the normality test was satisfied. In all washing solvents except TPM and DNC, the Dip group showed the lowest flexural strength values, while the Auto group showed the highest flexural strength values except for DNC. Additionally, the washing solution showed completely different flexural strength values depending on the washing method.

Keywords

Acknowledgement

이 논문은 2023년도 부산가톨릭대학교 교내연구비에 의하여 연구되었음.

References

  1. Scribante, A., Gallo, S., Pascadopoli, M., Canzi, P., Marconi, S., Montasser, M. A., Bressani, D., Properties of CAD/CAM 3D Printing Dental Materials and Their Clinical Applications in Orthodontics: Where Are We Now?, Appl. Sci., 12(2), 551, (2022).
  2. Stansbury, J. W., Idacavage, M. J., 3D printing with polymers: Challenges among expanding options and opportunities, Dent. Mater., 32(1), 54-64, (2016).
  3. Lee, J. Y., An, J., Chua, C. K., Fundamentals and applications of 3D printing for novel materials, Appl. Mater. Today., 7, 120-133, (2017).
  4. Kessler, A., Hickel, R., Reymus, M., 3D Printing in Dentistry-State of the Art, Oper. Dent., 45(1), 30-40, (2020).
  5. Gad, M. M., Fouda, S. M., Factors affecting flexural strength of 3D-printed resins: A systematic review, J. Prosthodont., 96-110, (2023).
  6. Mayer, J., Reymus, M., Mayinger, F., Edelhoff, D., Hickel, R., Stawarczyk, B., Temporary 3D-Printed Fixed Dental Prosthesis Materials: Impact of Postprinting Cleaning Methods on Degree of Conversion and Surface and Mechanical Properties, Int. J. Prosthodont., 34(6), 784-795, (2021).
  7. Taormina, G., Sciancalepore, C., Messori, M., Bondioli, F., 3D printing processes for photocurable polymeric materials: technologies, materials, and future trends, J. Appl. Biomater. Funct. Mater., 16(3), 151-160, (2018).
  8. Quan, H., Zhang, T., Xu, H., Luo, S., Nie, J., Zhu, X., Photo-curing 3D printing technique and its challenges, Bioact. Mater., 5(1), 110-115, (2020).
  9. Bae, J. H., Choi, J. W., Evaluation of Marginal and Internal Gap of Temporary Prosthesis Fabricated by 3D Printing Method According to Rinsing Method and Rinsing Time, KSIC, 26(4), 561-570, (2023).
  10. Nulty, A., A comparison of trueness and precision of 12 3 D printers used in dentistry, BDJ. open., 8(1), 14, (2022).
  11. Mayer, J., Stawarczyk, B., Vogt, K., Hickel, R., Edelhoff, D., Reymus, M., Influence of cleaning methods after 3D printing on two-body wear and fracture load of resin-based temporary crown and bridge material, Clin. Oral. Investig., 25, 5987-5996, (2021).
  12. Kumar, S., Hofmann, M., Steinmann, B., Foster, E. J., Weder, C., Reinforcement of Stereolithographic Resins for Rapid Prototyping with Cellulose Nanocrystals, ACS. Appl. Mater. Interfaces., 4(10), 5399-5407, (2012).
  13. Piedra-Cascon, W., Krishnamurthy, V. R., Att, W., Revilla-Leon, M., 3D printing parameters, supporting structures, slicing, and post-processing procedures of vat-polymerization additive manufacturing technologies: A narrative review, J. Dent., 109, 103630, (2021).
  14. Bardelcik, A., Yang, S., Alderson, F., Gadsden, A., The effect of wash treatment on the mechanical properties and energy absorption potential of a 3D printed polymethyl methacrylate (PMMA), Mater. Today. Commun., 26, 101728. (2021).
  15. Reymus, M., Fabritius, R., Kessler, A., Hickel, R., Edelhoff, D., Stawarczyk, B., Fracture load of 3D-printed fixed dental prostheses compared with milled and conventionally fabricated ones: the impact of resin material, build direction, post-curing, and artificial aging-an in vitro study, Clin. Oral. Investig., 24(2), 701-710, (2020).
  16. Alharbi, N., Osman, R., Wismeijer, D., Effects of build direction on the mechanical properties of 3D-printed complete coverage interim dental restorations, J. Prosthet. Dent., 115(6), 760-767, (2016).
  17. Mostafavi, D., Methani, M. M., Piedra-Cascon, W., Zandinejad, A., Revilla-Leon, M., Influence of the Rinsing Postprocessing Procedures on the Manufacturing Accuracy of Vat-Polymerized Dental Model Material, J. Prosthodont., 30(7), 610-616, (2021).
  18. Scherer, M. D., Husain, N. A. H., Barmak, A. B., Kois, J. C., Ozcan, M., Revilla-Leon, M., Influence of postprocessing rinsing solutions and duration on flexural strength of aged and nonaged additively manufactured interim dental material, J. Prosthet. Dent., Online ahead of print, (2022).
  19. Jin, G., Gu, H., Jang, M., Bayarsaikhan, E., Lim, J. H., Shim, J. S., Lee, K. W., Kim, J. E., Influence of postwashing process on the elution of residual monomers, degree of conversion, and mechanical properties of a 3D printed crown and bridge materials, Dent. Mater., 38(11), 1812-1825, (2022).