Kang, Hyun-Woo;Bae, Ki-Taek;Cho, Yong-Soo;Youn, Dae-Hee
50
In this paper, an adaptive precompensator, which can reduce the distortion of a Wiener system effectively, is proposed. The previous techniques for adaptive precompensation, based on the Volterra series modeling to compensate the distortion of a nonlinear system, are not suitable for real-time implementation due to high computational burden and slow convergence burden and slow convergence rate. This paper presents an adaptive precompensation technique for the class of nonlinear subsystem, referred to as Wiener system. An adaptive algorithm for adjusting the parameters of a precompensator, structured by a hammerstein model, is derived using the stochastic gradient method. Also, an adaptive precompensatin technique which can effectively reduce nonlinear distortion in μ-law type of saturation characteristics is proposed. The validity of the proposed algorithm is confirmed through simulation by applying it to known Wiener systmes and a typical loudspeaker model.