Proceedings of the Korea Water Resources Association Conference
/
2010.05a
/
pp.1084-1088
/
2010
일반적으로 자연하천에서는 횡방향 흐름저항 요소가 매우 다를 수 있다. 이러한 하천은 흐름저항 요인에 따라 몇 개의 소단면으로 구분될 수 있으며, 1차원 해석을 위해서는 단면 전체를 대표하는 복합 조도계수(composite roughness coefficient)를 사용함으로써 수위 또는 평균유속의 계산이 가능해 진다. 복합 조도계수는 각 소단면의 면적(A), 윤변(P), 또는 동수반경(R)을 적절히 조합하여 각 소단면의 조도계수에 가중치를 부여하면서 계산되는데, 각 산정식들의 개발과정에 도입된 가정 조건에 따라 상이한 가중치를 부여하게 되며, 일부 산정식들에서는 횡방향으로 동일한 재료로 구성된 조건에서도 복합 조도계수 산정 결과는 하상재료에 의한 조도계수와 다른 값을 산정하게 된다. 본 연구에서는 13개의 기존 복합 조도계수 산정식을 이론적으로 검토하였고, 소규모 실내 수리실험자료로부터 실측 복합 조도계수와 계산된 값을 비교 분석하였으며, 소단면 분할방법에 의한 기존 산정식의 적용성을 분석하였다. 분석결과, 윤변을 가중치로 사용하는 경우는 실측 복합 조도계수 그리고 각 산정식에 의한 계산 복합 조도계수의 차이가 비교적 작게 나타났으나 각 산정식의 가정조건에 유의하여야 하는 것으로 나타났다. 한편 단면적 또는 윤변과 동수반경을 조합하여 가중치로 사용하는 경우는 방법별로 큰 차이를 보이는 것으로 분석되었고, 그 원인은 단면분할 방법에 기인하므로 이러한 방법을 적용할 경우에는 소단면 분할방법에 특히 주의하여야 함을 알 수 있다.
Journal of the Korea Society of Computer and Information
/
v.18
no.1
/
pp.177-183
/
2013
In this paper, Cohen's kappa and weighted kappa are applied to measuring classification accuracy when performing classification in data minig. Cohen's kappa compensates for classifications that may be due to chance and is used for the data with nominal or ordinal scales. Especially, for the ordinal data, weighted kappa which measures the classification accuracy by quantifying the classification errors as weights is used. We used two weights (linear weight, quadratic weight) for calculations of weighted kappa. Also for the calculation and comparison of kappa and weighted kappa we used a real data set, fat-liver data.
Proceedings of the Korea Water Resources Association Conference
/
2010.05a
/
pp.1196-1200
/
2010
본 논문에서는 지점 강우의 결측치를 추정하기 위해 전통적인 통계학적 내삽기법을 이용한 역거리가중치법(IDWM), 역지수가중치법(IEWM), 상관계수가중치법(CCWM)과 패턴 인식의 일종인 인공신경망(ANN)기법 그리고 시공간적 강우분포의 측정이 가능한 레이더 자료를 이용해 결측치를 추정하여 각각의 방법을 비교하였다. 임진강 유역의 15개 지상관측소를 대상으로 교차검정(Cross validation) 분석을 실시해 본 결과, CCWM 방법과 ANN기법에 의한 RMSE가 0.46~1.79의 범위를 보였고, 보정레이더를 이용하여 결측치를 추정한 경우RMSE가 0.05~2.26의 범위를 보여 기존의 전통적 결측치 추정방법보다 실측치에 가까운 결과를 보였다. 이는 레이더자료가 지점 강우자료와는 달리 강우의 시공간적 변동성을 고려한 공간분포의 정보를 지니고 있기 때문인 것으로 판단된다.
현행 일반적으로 쓰여지고 있는 물가지수 산식은 기준시점의 거래량(또는 거래금액)을 상품별 가중치(weight)로 삼는 가중총합방식(weighted aggregate formula, 또는 가중산술평균산식)으로서의 Laspeyres식이라 함은 주지하는 바와 같다. 그것이 상품별로 유통면의 중요성을 분명히 감안하여 있고, 비교시점의 가격변동만이 계산에 반영된다는 점에 있어서 물가지수로서의 실용성이 널리 인정되어 있는 산식이다. 그러나 Lasperyres식의 난점을 또한 많은 것이니 그 가운데 특히 가중치의 고정성과 관련하여 기준시점의 이동에 따른 전후 물가지수의 비연결성은 결정적 결함이라 할 수 있다. 여기에 이 식의 지수적 허구성이 흔히 논의되고, 이른바 Paasche check라 하여 수시로 조사한 거래량(또는 거래금액)에 의하여 물가지수의 가중치로 삼아서 전자를 검정하는 방법도 쓰여지는 형편이다. 필지는 일찌기(1973년) Laspeyres식의 상품별 가중치에 관한 객관적 평가법의 하나로서 산업(따라서 상품)의 연관분석적 수단에 의한 약간의 시안을 발표한 바 없지 않았다. 그것은 요약컨대 산업연관분석에 쓰이는 투입계수표를 중심삼아 한 상품가격이 다른 상품가격에 미치는 파급효과, 따라서 물가에 미치는 파급력을 계산하고, 나아가서 각 상품의 수요 및 공급함수를 도입하여 그들 계수를 추정함으로써 가중치의 객관화를 꾀해 본 것이 전고의 골자이다.
Weights can be made and imposed in both sample design stage and analysis stage in a sample survey. While in design stage weights are related with sample data acquisition quantities such as sample selection probability and response rate, in analysis stage weights are connected with external quantities, for instance population quantities and some auxiliary information. The final weight is the product of all weights in both stage. In the present paper, we focus on the weight in analysis stage and investigate the effect of such weights imposed on the weighted mean when estimating the population mean. We consider a finite population with a pair of fixed survey value and weight in each unit, and suppose equal selection probability designs. Under the condition we derive the formulas of the bias as well as mean square error of the weighted mean and show that the weighted mean is biased and the direction and amount of the bias can be explained by the correlation between survey variate and weight: if the correlation coefficient is positive, then the weighted mein over-estimates the population mean, on the other hand, if negative, then under-estimates. Also the magnitude of bias is getting larger when the correlation coefficient is getting greater. In addition to theoretical derivation about the weighted mean, we conduct a simulation study to show quantities of the bias and mean square errors numerically. In the simulation, nine weights having correlation coefficient with survey variate from -0.2 to 0.6 are generated and four sample sizes from 100 to 400 are considered and then biases and mean square errors are calculated in each case. As a result, in the case or 400 sample size and 0.55 correlation coefficient, the amount or squared bias of the weighted mean occupies up to 82% among mean square error, which says the weighted mean might be biased very seriously in some cases.
This paper reviewed application of data-driven method, distance-weighted method(IDWM, IEWM, CCWM, ANN), and radar data method estimated of missing raifall data. To evaluate these methods, statistics was compared using radar and station rainfall data from Imjin-river basin. The range of RMSE values calculated for CCWM, ANN was 1.4 to 1.79mm, and the range of RMSE values estimated data used for radar rainfall data was 0.05 to 2.26mm. Spatial characteristics is considered to Radar rainfall data rather than station rainfall data. Result suggest that estimated data used for radar data can impove estimation of missing raifall data.
Park, Sung-Chun;Kim, Yong-Gu;Jeong, Cheon-lee;Moon, Byoung-seok
Proceedings of the Korea Water Resources Association Conference
/
2004.05b
/
pp.859-862
/
2004
유역평균강우량은 강우-유출모형을 통하여 유출량을 산정할 경우에 사용되며, 산정 방법에는 산술평균법, Thiessen 가중법, 등우선법 등이 있으나 일반적으로 Thiessen 가중법을 많이 적용하고 있다. Thiessen 가중법의 유역평균 강우량 산정방법은 각 관측소가 지배하는 면적(지배면적)을 전체면적으로 나누어 가중치(Thiessen계수)를 구한 후 여기에 각 관측소의 강우량을 곱하고 이를 합산함으로써 유역평균 강우량을 산정하는 방법이다. 본 연구에서는 면적비로 구해지는 Thiessen 계수의 대안을 찾기 위해 대상 유역으로는 영산강 1지류인 지석천 유역을 선정하였고, 단층퍼셉트론을 이용하여 동면, 청풍, 능주의 강우자료를 Input, 능주지점의 유출자료를 Output으로 상호 상관분석으로부터 한 개의 유출 사상에 대해 가장 높은 상관계수를 선택하여 Input 자료를 재구성하였다. 재구성 한 자료를 이용하여 훈련시키고 여기서 발생한 가중치를 Thiessen 계수의 대안의 값으로 추천한다.
Journal of the Korean Data and Information Science Society
/
v.25
no.2
/
pp.357-363
/
2014
OPS is a sabermetric baseball statistic calculated as the sum of a player's on base percentage (OBP) and slugging percentage (SLG). One of the frequently cited problem with OPS is that OPS gives equal weight to its two components, OBP and SLG. In fact, OBP contributes significantly more to scoring runs than SLG does. This paper provides some exploration into the correct weighting of OBP to SLG when adding the two together. By correlating different coefficients of OBP to runs scored per game, the weighted OPS that weighting OBP 56% in two place more than SLG produced the highest correlation. We found that the weight of OBP increases as RPG increases. Also we suggest the linear regression equation of the best OBP coefficient against RPG.
This study aims to present the sensitivity analysis approach for multi-criteria decision making (MCDM) method to reduce the uncertainty of weighting and performance values. This study focuses on two major problems of the uncertainty for MCDM method. The first major problem is how to determine the most critical criterion and the second is how to determine the most critical measure of performance. This study used the application of weighted sum method for water resources planning. The criticality degrees and the sensitivity coefficients of criterion and alternative are used. This results of sensitivity analysis can be applied to the general water resources planning in real.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2017.06a
/
pp.81-82
/
2017
본 논문에서는 PSNR 을 높이도록 최적화된 HEVC 의 율-왜곡 최적화(RDO)를 MS-SSIM 를 높이도록 하여 RDO 를 수행 하도록 한다. 구현 방법으로는 MS-SSIM 도출 방법과 비슷하도록 원본과 4 단계의 저역 통과 필터(LPF)를 통과한 결과에 대한 DCT(Discrete Cosine Transform) 를 수행하고 그 AC 계수의 비율로 lagrange multiplier(${\lambda}$)를 수정하는 방식이다. AC 계수 비율과 MS-SSIM 에서 도출 된 가중치, LPF 특성 등에 따라 새롭게 각 스케일의 가중치를 결정하여 최종적으로 ${\lambda}$ 가중치를 결정하여 그 결과를 바탕으로 RDO 를 수행한다. 시뮬레이션을 통해 제안의 방법과 HEVC reference software 의 BD-rate 계산 결과 7%의 PNSR, -13.2%의 MS-SSIM 를 얻을 수 있었고 이에 따라 주관적 화질을 개선했다고 할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.