• Title/Summary/Keyword: 철도차량 동역학

Search Result 73, Processing Time 0.033 seconds

On the System Development for the railway vehicle dynamic analysis based on integrated process environments (프로세스 통합 환경 기반의 철도차량 동역학 해석시스템 구축)

  • Huh Young-Cheol;Han Hyung-Suk;Lee Jae-Kyung;Kim Byung-Hyun
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.140-145
    • /
    • 2005
  • The dynamic performances of railway vehicles, such as ride comfort, stability and safety, have the opposite characteristics of response each other according to design changes of suspensions. For this reasons, it is necessary that multidisciplinary engineers join in design processes of the suspensions so as to satisfy the requirements of dynamic performance with design constraints. Sometimes iterative dynamic analyses are required so many times during the design processes. In this paper, the development of integrated process environments and the dynamic analyses of railway vehicles based on the environments are presented. Using agent and wrapping technologies, process managements about the work process and design parameters were set up under the distributed computing environments. Also, dynamic analyses on the sample railway vehicle were carried out and the efficiency and improvement in future work were discussed as results.

  • PDF

The Development of Program for Time Domain Simulation of Railway Dynamics (철도차량 동역학의 시간영역 시뮬레이션 프로그램 개발)

  • No, Chang-Su
    • 한국기계연구소 소보
    • /
    • s.18
    • /
    • pp.87-97
    • /
    • 1988
  • The algorithm for relation of contact status, track shift, and contact force caused from wheel/rail contact geometry is presented. Grafting this algorithm into a algorithm of general program analyzing mechanical system, the program for time domain simulation of railway vehicle dynamics, called CASOTD, was developed. In addition, as applied example of CASOTD, the dynamic simulation of railway vehicle running on a rail joint and a irregularly alinemented rail is done in this paper.

  • PDF

Optimization of a Train Suspension using Kriging Meta-model (크리깅 메타모델에 의한 철도차량 현수장치 최적설계)

  • Lee, Kwang-Ki;Lee, Tae-Hee;Park, Chan-Kyoung
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.339-344
    • /
    • 2001
  • In recent engineering, the designer has become more and more dependent on the computer simulations such as FEM (Finite Element Method) and BEM (Boundary Element Method). In order to optimize such implicit models more efficiently and reliably, the meta-modeling technique has been developed for solving such a complex problems combined with the DACE (Design and Analysis of Computer Experiments). It is widely used for exploring the engineer's design space and for building meta-models in order to facilitate an effective solution of multi-objective and multi-disciplinary optimization problems. Optimization of a train suspension is performed according to the minimization of forty-six responses that represent ten ride comforts, twelve derailment quotients, twelve unloading ratios, and twelve stabilities by using the Kriging meta-model of a train suspension. After each Kriging meta-model is constructed, multi-objective optimal solutions are achieved by using a nonlinear programming method called SQP (Sequential Quadratic Programming).

  • PDF

Performance Prediction of Tilting Actuator for 180km/h Korea Tilting Train (180km/h급 한국형 틸팅차량의 틸팅대차용 엑츄에이터 성능 예측)

  • Ko Taehwan;Kim Nam-Po;Han Seung-Ho
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.455-460
    • /
    • 2003
  • 180km/h 급 한국형 틸팅차량의 틸팅 메카니즘 기구동역학 해석을 통하여 얻어진 틸팅 대차를 형성하는 주요 파라메터들의 값을 기반으로 틸팅대차용 엑츄에이터의 성능과 용량을 계산하여 설계에 결과를 반영하고자 한다. 승객의 안락감을 유지하기 위해 차체 틸팅 각가속도에 Sine 연속 함수를 적용하여 차체의 틸팅 제어 패턴을 결정하였으며, 이를 통해 차체의 틸팅 각속도와 틸팅각의 패턴을 얻어내었다. 또한 이번 연구를 통해 틸팅 메카니즘의 파라메타를 변화하면서 각각의 틸팅각에 따른 Swing bar 와 엑츄에이터에 작용되는 반발력에 대한 영향력을 분석, 검토하였으며, 이에 따른 엑츄에이터의 출력과 변위 속도등의 변화를 조사하였다. 이러한 결과와 틸팅 메카니즘 기구동력학 해석의 결과를 토대로 틸팅차량이 요구하는 최적의 틸팅 운동을 수행하는 파라메타를 결정하였다.

  • PDF

Safety evaluation of dynamic behavior of Korean tilting train (TTX차량의 동역학적 거동의 안정성 평가)

  • Yoon, Ji-Won;Kim, Nam-Po;Kim, Young-Guk;Kim, Seog-Won;Park, Tae-Won
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.540-545
    • /
    • 2007
  • The tilting train is able to tilt its body towards the center of the turning radius, preventing roll-over of the train as it runs on a curved rail at high-speed. This train, widely accepted for commercial purpose internationally, is very beneficial in that the operating time is shortened without much capital investment to the infrastructure where there are many curved rails. Over several years, the Korea Railroad Research Institute (KRRI) has developed such a train. In this paper, the safety of the Korean tilting train express (TTX) is investigated using a dynamic simulation model. Since proper safety standards have not been established for the TTX, those for the Korean train express (KTX) is employed to analyze the safety and ride comfort of the TTX. This study is useful in predicting the behavior of the TTX and ride comfort, and conforms that designed TTX is stable enough to satisfy the safety standards. It would be useful to recommend proper normal operating speed and determine the maximum safety speed, according to the result. Furthermore, it would be possible to provide basic reference data when analyzing the dynamic effect of the catenary system and the fatigue of the bogie.

Levitation Control Simulation of a Maglev Vehicle Considering Guideway Flexibility (가이드웨이 유연성이 고려된 자기부상열차 부상제어 시뮬레이션)

  • Han, Jong-Boo;Lim, Jaewon;Kim, Chang-Hyun;Han, Hyung-Suk;Kim, Sung-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.1
    • /
    • pp.15-24
    • /
    • 2015
  • In magnetic levitation vehicles, the clearance between the magnet and track should be maintained within an allowable range through a feedback control loop. The flexibility of the guideway would introduce additional modes in the overall suspension system, resulting in dynamic interaction between the guideway vibration and the electromagnetic suspension control system. This dynamic interaction can be a serious problem, particularly at very low speeds or standstill, and may cause airgap instability. To optimize the overall system dynamics, an integrated dynamic model including mechanical and electrical parts and a flexible guideway as well as a control loop was developed. With the proposed model, airgap simulations at standstill were performed while varying the control gains, specifically with the aim of understanding the effects of gains of the PID controller on the airgap variation. The findings may be used to achieve a stable levitation controller design.

Development and Verification of the Steering Algorithm for Articulated Vehicles (굴절차량에 대한 조향알고리즘 개발 및 검증)

  • Moon, Kyeong-Ho;Lee, Soo-Ho;Mok, Jai-Kyun;Park, Tae-Won
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.3
    • /
    • pp.225-232
    • /
    • 2008
  • AWS (all wheel steering) is applied to improve the stability and the turning performance. Most automotive cars are mainly controlled by FWS (front wheel steering) system except some cars which are made to improve their stability by using AWS. Articulated vehicles with a pivoting joint for easy turn are difficult to make a sharp turn because of the long body and long wheelbase. Therefore applying AWS to the articulated vehicles is effective to reduce the turning radius. The AWS control method for the articulated vehicles is currently applied to only Phileas vehicles which were developed by APTS. The paper on the design of a controller to guide an articulated vehicle along the path was published but control algorithm for manual driving has not been reported. In the present paper, steering, characteristics of the Phileas vehicles have been analyzed and then new algorithm has been proposed. To verify the AWS algorithm, Commercial S/W, ADAMS was used for validity of the dynamic model and algorithm.

Study on 3-D Simulation for Overriding Evaluation of Urban Train (도시철도차량 타고오름 평가를 위한 3 차원 충돌시뮬레이션 기법 연구)

  • Jin, Sung Zu;Jung, Hyun Seung;Kwon, Tae Soo;Kim, Jin Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.10
    • /
    • pp.1063-1068
    • /
    • 2015
  • In this paper, we propose a collision simulation technique the evaluation of urban trains. We perform simulation that include a dynamics bogie model which represents the dynamic behavior of bogies and a finite-element model that can model crash behavior. We perform simulation in accordance with the 40-mm vertical offset head-on scenario for overriding the evaluation of the EU and domestic crashworthiness regulations. We evaluate the overriding by the vertical displacement of the wheelset using the overriding evaluation standard. Finally, if proposed simulation technique is applied, we can evaluate the overriding for urban-train crashworthiness regulations.

Dynamic Analysis of a Bogie Tilting Mechanism (대차 틸팅 기구의 동적 해석)

  • 구동회;김남포;한형석
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.4
    • /
    • pp.300-307
    • /
    • 2003
  • Using a conventional railway, a tilting train was applied as a means of improving vehicle speed curve negotiation without any modification of infrastructure. In order to achieve the optimal car-body position control through the tilting mechanism, a dynamics analysis was required after the kinematics analysis of the tilting mechanism. For this, the geometric relationship of the linkage-type tilting mechanism was defined. Then, the equations of motion for the half car-body were derived. With the derived equations, the effect of the parameter change on performance was analyzed. The analysis result can be used in the optimum design of a tilting mechanism that considers the track environment, vehicle and operational conditions in which the tilting vehicle is applied.

An Evaluation on Derailment according to Running Safety of Next-Generation High Speed Train (HEMU-430X) (차세대 고속열차(HEMU-430X)의 주행 안전에 따른 탈선평가)

  • Sim, Kyung-Seok;Park, Tae-Won;Lee, Jin-Hee;Jeong, Gi-Beom
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.4
    • /
    • pp.343-351
    • /
    • 2012
  • With the cooperation of many research institutes and railway companies, the next generation high speed train is under development for many years. To confirm the safety requirement of the developed high speed train, multibody dynamic analysis is implemented. Through this analysis, railway derailment and lateral guiding force simulation was evaluated according to UIC code 518 OR for international railway vehicle. Test results were compared by limit value of safety criteria. Safety evaluation results, according to international standards, would provide basic reference data of ensuring safety speed and track radius curve. The safety of the train at the maximum speed is verified by numerical analysis results.