• Title, Summary, Keyword: 철도차량 동역학

Search Result 89, Processing Time 0.048 seconds

A Study on a Dynamic Modelling for the Development of the Tilting Train Simulator (틸팅 차량용 시뮬레이터 개발을 위한 철도차량 모델링)

  • Kim Nam-Po;Kim Jung-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.9
    • /
    • pp.1183-1190
    • /
    • 2005
  • This paper presents a dynamic model of railway vehicle for the development of a 6-axis tilting train simulator. The tilting train simulator will be used to verify the tilting electronics and tilting control algorithm that are to be applied to the Korean tilting train. The tilting train simulator is composed of 6 electric-driven actuators, a track generation system, a graphic user interface, and a visualization system with a 1600mm-diameter dome screen. The each system shares the data by means of ethernet network in realtime. In this study, a train model of 9-DOF with a force generation system to tilt train body has been developed. The dynamic analysis for the straight track running and curve negotiation of a railway vehicle can be performed in the model. In this study, a verification study for the application of the model to the simulator has been conducted under curving situation on the track with different radii.

Development of a Theoretical Wheelset Model to Predict Wheel-climbing Derailment Behaviors Caused by Rolling Stock Collision (철도차량 충돌에 의한 타고오름 탈선거동 예측을 위한 단일윤축 이론모델 개발)

  • Choi, Se-Young;Koo, Jeong-Seo;You, Won-Hee
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.3
    • /
    • pp.203-210
    • /
    • 2011
  • This study formulates the theoretical wheel-set model to evaluate wheel-climbing derailments of rolling stock due to collision, and verifies this theory with dynamic simulations. The impact forces occurring during collision are transmitted from a car body to axles through suspensions. As a result of combinations of horizontal and vertical forces applied to axles, rolling stock may lead to derailment. The derailment type will depend on the combinations of the horizontal and vertical forces, flange angle and friction coefficient. According to collision conditions, the wheel-lift, wheel-climbing or roll-over derailments can occur between wheel and rail. In this theoretical derailment model of wheelset, the wheel-climbing derailment types are classified into Climb-over, Climb/roll-over, and pure Roll-over according to derailment mechanism between wheel and rail, and we proposed the theoretical conditions to generate each derailment mechanism. The theoretical wheel-set model was verified by dynamic simulations.

Fatigue Analysis of Reduction Gears Unit in Rolling Stock Considering Operating Characteristics (운행특성을 고려한 철도차량 감속기의 피로해석)

  • Kim, Chul-Su;Kang, Gil-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1085-1090
    • /
    • 2011
  • To assure the safety of rolling stock, it is important to perform the fatigue analysis of reduction gear unit in rolling stock considering a variation of velocity and traction motor capability. This paper presents fatigue analysis of the damage of reduction gear unit of railway vehicle under variable amplitude loading(VAL) based on quasi-static fatigue analysis using finite element model and linear Miner's rule. The VAL for the simulation was constructed from the tractive effort curve and train run curves of railway vehicle under commercial operation condition using MSC.ADAMS dynamic analysis. The finite element model for evaluating the carburizing effect on the gear surface was used for predicting the fatigue life of the middle gear based on strain-life based approach. The results showed that the frequent high starting torque due to a quick start as well as increasing numbers of stops at station would decrease the fatigue life of reduction gear unit.

Matlab Toolbox for Guidance & Traction Control Designs of an Articulated Transportation Vehicle (굴절차량의 안내/추진 제어 설계용 Toolbox)

  • Min, Kyung-Deuk;Yun, Kyoung-Han;Kim, Young-Chol;Byun, Yun-Seob;Mok, Jai-Kyun
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.1549-1550
    • /
    • 2008
  • KRRI 바이모달 트램은 굴절버스 형태로 모든 차륜이 조향 가능하며 트레일러의 차륜과 트랙터의 후륜이 독립적으로 구동 가능한 시스템이다. 본 논문은 굴절차량용 자동 안내/추진 제어기를 설계하기 위한 차량의 동역학 분석 및 제어기의 성능분석용 Toolbox를 소개한다.

  • PDF

Anti-skid Control System Analysis of a Tilting Train (틸팅차량의 활주방지 제어시스템 해석)

  • Kang, Chul-Goo;Kim, Ho-Yeon;Kim, Min-Soo;Goo, Byeong-Choon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.2
    • /
    • pp.169-178
    • /
    • 2009
  • The presence of low adhesion at the wheel-rail contact point can result in skid of train wheels, and the skid, in turn, results in flats appearing on the wheels. Thus, anti-skid control has a crucial role for safe braking and prevention from flats that could cause a disastrous train accident. This paper presents dynamic modeling of a tilting train and the brake system of the tilting train, and analyzes the anti-skid logic used in the tilting train. The validity of the analysis is demonstrated via simulation study using Simulink for skid and re-adhesion circumstances of the tilting train.

Safety evaluation of dynamic behavior of Korean tilting train (TTX차량의 동역학적 거동의 안정성 평가)

  • Yoon, Ji-Won;Kim, Nam-Po;Kim, Young-Guk;Kim, Seog-Won;Park, Tae-Won
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.540-545
    • /
    • 2007
  • The tilting train is able to tilt its body towards the center of the turning radius, preventing roll-over of the train as it runs on a curved rail at high-speed. This train, widely accepted for commercial purpose internationally, is very beneficial in that the operating time is shortened without much capital investment to the infrastructure where there are many curved rails. Over several years, the Korea Railroad Research Institute (KRRI) has developed such a train. In this paper, the safety of the Korean tilting train express (TTX) is investigated using a dynamic simulation model. Since proper safety standards have not been established for the TTX, those for the Korean train express (KTX) is employed to analyze the safety and ride comfort of the TTX. This study is useful in predicting the behavior of the TTX and ride comfort, and conforms that designed TTX is stable enough to satisfy the safety standards. It would be useful to recommend proper normal operating speed and determine the maximum safety speed, according to the result. Furthermore, it would be possible to provide basic reference data when analyzing the dynamic effect of the catenary system and the fatigue of the bogie.

A Study on Dynamic Modeling and Analysis of a Wheelset (휠셋의 동역학 모델링 및 해석에 관한 연구)

  • Kang, Ju-Seok
    • Proceedings of the KSR Conference
    • /
    • /
    • pp.1851-1855
    • /
    • 2011
  • The accuracy of wheel-rail contact analysis is mainly determined by the methods to find wheel-rail contact points and to calculate contact forces. The 2-dimensional approach which calculates contact points based on the profile curves of the wheel and rail has advantage of reducing calculation time but shortage of approximating the solutions when comparing with 3-dimensional analysis In this analysis, wheelset dynamic behaviors calculated by the approach based on the 2-dimensional wheel-rail curves are compared with those by the 3-dimensional wheel-rail surfaces. Yaw angle and lateral displacement of wheelset center are compared when negotiating a curve.

  • PDF

An Evaluation on Derailment according to Running Safety of Next-Generation High Speed Train (HEMU-430X) (차세대 고속열차(HEMU-430X)의 주행 안전에 따른 탈선평가)

  • Sim, Kyung-Seok;Park, Tae-Won;Lee, Jin-Hee;Jeong, Gi-Beom
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.4
    • /
    • pp.343-351
    • /
    • 2012
  • With the cooperation of many research institutes and railway companies, the next generation high speed train is under development for many years. To confirm the safety requirement of the developed high speed train, multibody dynamic analysis is implemented. Through this analysis, railway derailment and lateral guiding force simulation was evaluated according to UIC code 518 OR for international railway vehicle. Test results were compared by limit value of safety criteria. Safety evaluation results, according to international standards, would provide basic reference data of ensuring safety speed and track radius curve. The safety of the train at the maximum speed is verified by numerical analysis results.

Study on the Dynamic Behavior Characteristics due to the Unbalance High Speed Railway Vehicle Wheel (고속철도차량용 차륜 불평형에 의한 동적 거동 특성 연구)

  • Lee, Seung-Yil;Song, Moon-Shuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.175-181
    • /
    • 2016
  • This occurs when the unbalanced rotating body is inconsistent with the mass center line axis geometric center line. Wheelsets are assembled by a single axle with two wheels and a rotating body of a running railway vehicle. Owing to non-uniformity of the wheel material, the wear, and error of the wheel and axle assembly may cause an imbalance. Wheelsets will suffer the effects of vibrations due to the unbalanced mass, which becomes more pronounced due to the thin and high-speed rotation compared to the shaft diameter This can affect the driving safety and the running behavior of a rail car during high-speed running. Therefore, this study examined this unbalanced wheel using a railway vehicle multibody dynamics analysis tool to assess the impact of the dynamic VI-Rail movement of high-speed railway vehicles. Increasing the extent of wheel imbalance on the analysis confirmed that the critical speed of a railway vehicle bogie is reduced and the high-speed traveling dropped below the vehicle dynamic behaviour. Therefore, the adverse effects of the amount of a wheel imbalance on travel highlight the need for management of wheel imbalances. In addition, the static and dynamic management needs of a wheel imbalance need to be presented to the national rail vehicles operating agency.

Ride Quality Analysis Using Seated Human Vibration Modeling (시트-인체 진동 모델링을 이용한 승차감 해석)

  • Kang, Ju Seok
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.3
    • /
    • pp.194-202
    • /
    • 2015
  • In this paper, dynamic modeling with viscoelastic properties of a human body resting on a seat is presented to quantitatively analyze ride quality of passengers exposed to vertical vibrations. In describing the motions of a seated body, a 5 degree-of-freedom multibody model from the literature is investigated. The viscoelastic characteristics of seats used in railway vehicles are mathematically formulated with nonlinear stiffness characteristics and convolution integrals representing time delay terms. Transfer functions for the floor input are investigated and it is found that these are different in accordance with the input magnitude due to nonlinear characteristics of the seat. Measured floor input at the railway vehicle is used to analyze realistic human vibration characteristics. Frequency weighted RMS acceleration values are calculated and the effects of the seat design parameters on the frequency weighted RMS acceleration values are presented.