• Title/Summary/Keyword: Computational and experimental methods

Search Result 473, Processing Time 0.031 seconds

A Benchmark study on ultimate strength formulations of the aluminium stiffened panels under axial compression (알루미늄합금 보강판의 압축 최종강도 설계식의 비교연구)

  • ;;;O.F., Hughes;P.E., Hess
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.110-117
    • /
    • 2004
  • The aim of a benchmark study is carried out nine methods are employed for ULS analysis which implicitly predict the ultimate strength of aluminium stiffened panels under axial compression. For this purpose, DNV PULS, experimental and numerical data on the ultimate strength of panels were collected. Comparison of these experimental / numerical, DNV PULS / numerical, results with theoretical solutions by the candidate methods is performed. Also it's compared that ALPS/ULSAP program is based on closed-form formula for the ULS of plates and grillages under axial compression. It is considered that ALPS/ULSAP methodology provides quite accurate and reasonable ULS calculations by a comparison with more refined FEA. Comparison of these experimental data, numerical, computational software results with the simplified solutions obtained by the candidate methods is then performed. The model uncertainties associated with the candidate methods are studied in terms of mean bias and COV (i.e., coefficient of variation) against experiments and numerical solutions, and the relative performance of the various methods is discussed.

  • PDF

SIMULATION OF EXPERIMENTAL VISUALIZATION METHODS FOR COMPUTATIONAL FLUID DYNAMICS RESEARCH

  • TAMURA Y.;FUJII K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.04a
    • /
    • pp.44-68
    • /
    • 1995
  • In the present paper, visualization techniques in fluid dynamic experiments such as Schlieren photograph are numerically simulated so that the same output as the experimental flow visualization can be obtained from the computed results for the fair comparison. Numerical methods to simulate optical visualizations, that are Schlieren photograph, shadowgraph and interferogram, are considered. Some examples of pictures obtained by the present methods show the importance of the simulations of visualization techniques for the correct comparisons of the computations and experiments.

  • PDF

Computational Approaches for Structural and Functional Genomics

  • Brenner, Steven-E.
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2000.11a
    • /
    • pp.17-20
    • /
    • 2000
  • Structural genomics aims to provide a good experimental structure or computational model of every tractable protein in a complete genome. Underlying this goal is the immense value of protein structure, especially in permitting recognition of distant evolutionary relationships for proteins whose sequence analysis has failed to find any significant homolog. A considerable fraction of the genes in all sequenced genomes have no known function, and structure determination provides a direct means of revealing homology that may be used to infer their putative molecular function. The solved structures will be similarly useful for elucidating the biochemical or biophysical role of proteins that have been previously ascribed only phenotypic functions. More generally, knowledge of an increasingly complete repertoire of protein structures will aid structure prediction methods, improve understanding of protein structure, and ultimately lend insight into molecular interactions and pathways. We use computational methods to select families whose structures cannot be predicted and which are likely to be amenable to experimental characterization. Methods to be employed included modern sequence analysis and clustering algorithms. A critical component is consultation of the presage database for structural genomics, which records the community's experimental work underway and computational predictions. The protein families are ranked according to several criteria including taxonomic diversity and known functional information. Individual proteins, often homologs from hyperthermophiles, are selected from these families as targets for structure determination. The solved structures are examined for structural similarity to other proteins of known structure. Homologous proteins in sequence databases are computationally modeled, to provide a resource of protein structure models complementing the experimentally solved protein structures.

  • PDF

Experimental Study for Modal Parameter Estimation of Structural Systems (구조물의 자유진동특성 추정을 위한 실험적 연구)

  • 윤정방;이형진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.10a
    • /
    • pp.175-182
    • /
    • 1994
  • As for the safety evaluation of existing large-scale structures, methods for estimation of the structural and dynamic properties are studied. Sequential prediction error method in time domain and improved FRF estimator in frequency domain are comparatively studied. For this purpose, impact tests of 2 bay 3 floor steel frame structure are performed. Results from both methods are found to be consistent to each others, however those from the finite-element analysis are slightly different from experimental results.

  • PDF

ANALYSIS OF EQUILIBRIUM METHODS FOR THE COMPUTATIONAL MODEL OF THE MARK-IV ELECTR OREFINER

  • Cumberland, Riley;Hoover, Robert;Phongikaroon, Supathorn;Yim, Man-Sung
    • Nuclear Engineering and Technology
    • /
    • v.43 no.6
    • /
    • pp.547-556
    • /
    • 2011
  • Two computational methods for determining equilibrium states for the Mark-IV electrorefiner (ER) have been assessed to improve the current computational electrorefiner model developed at University of Idaho. Both methods were validated against measured data to better understand their effects on the calculation of the equilibrium compositions in the ER. In addition, a sensitivity study was performed on the effect of specific unknown activity coefficients-including sodium in molten cadmium, zirconium in molten cadmium, and sodium chloride in molten LiCl-KCl. Both computational methods produced identical results, which stayed within the 95% confidence interval of the experimental data. Furthermore, sensitivity to unavailable activity coefficients was found to be low (a change in concentration of less than 3 ppm).

Systematic Experimental and Numerical Analyses on Added Resistance in Waves (선박의 파랑 중 부가저항에 대한 실험과 수치계산의 비교 연구)

  • Park, Dong-Min;Seo, Min-Guk;Lee, Jaehoon;Yang, Kyung-Kyu;Kim, Yonghwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.6
    • /
    • pp.459-479
    • /
    • 2014
  • This paper considers experimental and numerical studies on added resistance in waves. As the numerical methods, three different methods, strip method, Rankine panel method and Cartesian-grid method, are applied. The computational results of vertical motion response and added resistance are compared with the experimental data of Series 60($C_B=0.8$) hull, S175 containership and KVLCC2 hull. To investigate the influence of above-still water hull form, a Rankine panel method is extended to two nonlinear methods: weakly-nonlinear and weak-scatterer approaches. As nonlinear computational models, three ships are considered: original KVLCC2 hull, 'Ax-bow' and 'Leadge-bow' hulls. Two of the three models are modified hull forms of original KVLCC2 hull, aiming the reduction of added resistance. The nonlinear computational results are compared with linear results, and the improvement of computational result is discussed. As experimental approach, a series of towing-tank experiment for ship motions and added resistance on the three models (original KVLCC2 hull, 'Ax-bow' and 'Leadge-bow') are carried out. For the original KVLCC2 hull, uncertainty analysis in the measurement of vertical motion response and added resistance is performed in three waves conditions: ${\lambda}/L=0.5$, 1.1, 2.0. From the experimental results, the effects of hull form on added resistance are discussed.

Large eddy simulation of turbulent flow using the parallel computational fluid dynamics code GASFLOW-MPI

  • Zhang, Han;Li, Yabing;Xiao, Jianjun;Jordan, Thomas
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1310-1317
    • /
    • 2017
  • GASFLOW-MPI is a widely used scalable computational fluid dynamics numerical tool to simulate the fluid turbulence behavior, combustion dynamics, and other related thermal-hydraulic phenomena in nuclear power plant containment. An efficient scalable linear solver for the large-scale pressure equation is one of the key issues to ensure the computational efficiency of GASFLOW-MPI. Several advanced Krylov subspace methods and scalable preconditioning methods are compared and analyzed to improve the computational performance. With the help of the powerful computational capability, the large eddy simulation turbulent model is used to resolve more detailed turbulent behaviors. A backward-facing step flow is performed to study the free shear layer, the recirculation region, and the boundary layer, which is widespread in many scientific and engineering applications. Numerical results are compared with the experimental data in the literature and the direct numerical simulation results by GASFLOW-MPI. Both time-averaged velocity profile and turbulent intensity are well consistent with the experimental data and direct numerical simulation result. Furthermore, the frequency spectrum is presented and a -5/3 energy decay is observed for a wide range of frequencies, satisfying the turbulent energy spectrum theory. Parallel scaling tests are also implemented on the KIT/IKET cluster and a linear scaling is realized for GASFLOW-MPI.

Experimental Comparison for Constant e using Spreadsheet (Spreadsheet를 활용한 상수 e의 실험적 비교)

  • 김철수;양영근
    • The Mathematical Education
    • /
    • v.40 no.1
    • /
    • pp.113-123
    • /
    • 2001
  • We investigated an irrational constant e and compared its computational methods using spreadsheet. Such methods are based on classical definition, infinite series, continued fraction, infinite product exponential function and accelerated classical method. This kind of work is focused on experimental mathematics using computers in math class. This approach will be helpful for mathematics teachers to teach constant e in their classroom.

  • PDF

Hull form Design and Application of CFD Techniques (선형설계와 수치계산기법 응용)

  • Kang K. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.9-14
    • /
    • 2000
  • Computational methods can be classified roughly into two parts: one is the methods based on a potential flow theory, and the other is numerical solvers(CFD) based on Navier-Stockes equation. Methods based on a potential theory are more effective than CFD when the free surface effect is considered. Especially Rankine source method seems to become widespread for simulations of wave making problems. For computations of viscous flow problems, CFD techniques have rapidly been developed and have shown many successful results in the viscous flow calculation. Present paper introduces a computational system 'WAVIS' which includes a pre-processor, potential ant viscous flow solvers and a post-processor. To validate the system, the calculated results for modem commercial hull forms are compared with measurements. It is found that the results from the system are in good agreement with the experimental data, illustrating the accuracy of the numerical methods employed for WAVIS.

  • PDF

NUMERICAL STUDY ON THE TURBOPUMP INDUCER (터보펌프 인듀서에 대한 수치해석적 연구)

  • Noh J.G.;Choi C.H.;Hong S.S.;Kim J.
    • Journal of computational fluids engineering
    • /
    • v.11 no.1 s.32
    • /
    • pp.16-20
    • /
    • 2006
  • The present study focuses on the flow analysis of a turbo pump inducer by performing both numerical and experimental methods. The head rise, efficiency and detailed flow fields such as outlet flow angles, pressure and velocity vectors are measured and compared with the computational data. Generally a good agreement is obtained between numerical and experimental results. However, some discrepancies are observed due to complex flow structures inside the inducer. Future calculations with an advanced turbulence model and a dense computational grid needs to be performed to obtain accurate numerical solution for the detailed flow fields.