• Title/Summary/Keyword: Double Circuit Transmission Line

Search Result 63, Processing Time 0.025 seconds

Fault Location for Incomplete-Journey Double-Circuit Transmission Lines on Same Tower Based on Identification of Fault Branch

  • Wang, Shoupeng;Zhao, Dongmei;Shang, Liqun
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1754-1763
    • /
    • 2017
  • This paper analyses the characteristics of incomplete-journey double-circuit transmission lines on the same tower formed by single-circuit lines and double-circuit lines, and then presents a fault location algorithm based on identification of fault branch. With the relationship between the three-phase system and the double-circuit line system, a phase-mode transformation matrix for double-circuit lines can be derived. Based on the derived matrix, the double-circuit lines with faults can be decoupled, and then the fault location for an incomplete-journey double-circuit line is achieved by using modal components in the mode domain. The algorithm is divided into two steps. Firstly, the fault branch is identified by comparing the relationships of voltage amplitudes at the bonding point. Then the fault location, on the basis of the identification result, is calculated by using a two-terminal method, and only the fault distance of the actual fault branch can be obtained. There is no limit on synchronization of each terminal sampling data. The results of ATP-EMTP simulation show that the proposed algorithm can be applied within the entire line and can accurately locate faults in different fault types, fault resistances, and fault distances.

Insulation Design Standards for Protection of Power System against Lightning in Korea Electric Power Corporation (낙뢰로부터 전력설비 보호를 위한 한전의 절연설계 기준)

  • Woo, J.W.;Moon, J.D.
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.12
    • /
    • pp.555-560
    • /
    • 2006
  • As it has been reported that more than 60% of transmission line faults occurs due to lightning strokes, lighting is one of concerned issues in electric power utility company. Most of transmission line is double circuit in Korea. Double circuit outages account for 33.7 percent of total lightning faults from 1996 to 2004. Even though transmission fault might be cleared shortly by protective system, it could deteriorate the power quality accompanied with sag or flicker. Moreover, double circuit fault may lead to more aggravated situation, for instance, blackout. To Protect transmission lines from lightning stroke, reduction of tower footing resistance, multiple ground wires and unbalanced insulation in double circuit lines have been adopted. In this paper, we would like to introduce insulation design standards for lightning protection of Korea Electric Power Corporation.

Double-Circuit Transmission Lines Fault location Algorithm for Single Line-to-Ground Fault

  • Yang, Xia;Choi, Myeon-Song;Lee, Seung-Jae
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.434-440
    • /
    • 2007
  • This paper proposes a fault location algorithm for double-circuit transmission lines in the case of single line-to-ground fault. The proposed algorithm requires the voltage and current from the sending end of the transmission line. The fault distance is simply determined by solving a second order polynomial equation which is achieved directly by the analysis of the circuit. In order to testify the performance of the proposed algorithm, several other conventional approaches have been taken out to compare with it. The test results corroborate its superior effectiveness.

A Study on Advanced Fault Locating for Short Fault of a Double Circuit Transmission Line (병행 2회선 송전선로의 선간단락시 고장점 표정의 개선에 관한 연구)

  • Park, Yu-Yeong;Park, Chul-Won
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.1
    • /
    • pp.28-37
    • /
    • 2016
  • Fault locating is an important element to minimize the damage of power system. The computation error of fault locator may occur by the influence of the DC offset component during phasor extraction. In order to minimize the bad effects of DC offset component, this paper presents an improved fault location algorithm based on a DC offset removal filter for short fault in a double circuit transmission line. We have modeled a 154kV double circuit transmission line by the ATP software to demonstrate the effectiveness of the proposed fault locating algorithm. The line to line short faults were simulated and then collected simulation data was used. It can be seen that the error rate of fault locating estimation by the proposed algorithm decreases than the error rate of fault locating estimation by conventional algorithm.

Analysis of the electrostatic induction voltage and electromagnetic induction current on the Parallel Circuit in 765kV Double Circuit Transmission Line (765kV 2회선 송전선로를 765kV 및 345kV로 병행운전시 유도현상 예측)

  • Woo, J.W.;Shim, E.B.;Kwak, J.S.;Jeon, M.R.;Kim, K.I.;Kim, T.O.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.169-171
    • /
    • 2002
  • The western route of KEPCO's 765kV transmission line has been tentatively operating as 345kV voltage before commercial operation. After finishing the test operation of 765kV substation in 2002. KEPCO decided to operate the 765kV line for commercial operation. During the applying of 765kV voltage to the transmission line, double circuit transmission line will be operated with two voltage grades of 765kV and 345kV. Because the earthing switch is installed on both end of transmission line, we had estimated the electrostatic induction voltage and electromagnetic induction current before the line energizing in order to confirm the ratings of earthing switch. The induced voltage and current is very important for the maintenance of parallel circuit. This paper describes the simulation study of electrical phenomena such as electrostatic induction voltage from the parallel line and electromagnetic induction current from the parallel circuit. The transmission line model was developed by EMTP (Electro-Magnetic Transient Program).

  • PDF

Analysis of Electrical Safety Level Test for Barehand Work at 765kV Vertical Double Circuit Six Bundle Conductors on the Suspension String Tower Type (765kV 수직2회선 6도체 현수형 철탑에서 직접활선작업의 안전성 평가분석)

  • Kim, Dae-Sik;Han, Sang-Ok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.3
    • /
    • pp.275-278
    • /
    • 2008
  • It has been issued that the necessity of Live line work for 765kV vertical double circuit six bundle conductors transmission line when the characteristics of transmission line, the composition of T/L and near the T/L circumstances etc. Others are considered. The Barehand method of UHV T/L is extremely dangerous work and especially it is directly related with lineman life so it is very dangerous. It should be performed several technology developments for live-line work on the UHV T/L, that should be considered such as the electrical influence on workers near the T/L, development of live-line facilities, guarantee of safety, the technical rules of live-line work, the safe method of live-line work and etc. In order to maintain the 765kV transmission lines safely by barehand work, first of all, we should know the analysis of electrical safety level test in live-line work at 765kV vertical double circuit six bundle conductors on the suspension string tower type.

Development of Arc-horn to be mounted on 154kV Transmission Line Arrester (154kV 송전선로 피뢰기 설치용 아킹혼 개발)

  • Min, Byeong-Wook;Kim, Woo-Kyum;Lee, Buk-Chang;Choi, Han-Yeol;Park, Jae-Ung;Keum, Eui-Yeon
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.335-336
    • /
    • 2008
  • Overhead transmission lines are mainly crossing mountainous area. They are easily affected in weathers like typhoon, strong wind, lightning, heavy rain, or heavy snow. Sometimes these weathers cause transmission line faults. A lightning flashover is most often fault. Nowadays lightning density in KOREA is growing high and lightning flashovers occur more often. A lightning flashover on transmission line is mostly cleared by momentary operation of a circuit breaker, so power failure happens rarely. However, when both circuits trip simultaneously due to the lightning flashovers on double circuit transmission line, short time power failure and voltage drop happen. KEPCO has used transmission line arresters to avoid double circuit simultaneous trip out since 2003. And transmission line arresters cannot be installed with KEPCO's present metal fittings, so various fittings have been used for each transmission line arrester manufacturer. This paper introduces development and standardization of arc-horn and metal fittings for transmission line arrester which can be used for both existing lines and new lines in KEPCO.

  • PDF

A Robust Fault Location Algorithm for Single Line-to-ground Fault in Double-circuit Transmission Systems

  • Zhang, Wen-Hao;Rosadi, Umar;Choi, Myeon-Song;Lee, Seung-Jae;Lim, Il-Hyung
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • This paper proposes an enhanced noise robust algorithm for fault location on double-circuit transmission line for the case of single line-to-ground (SLG) fault, which uses distributed parameter line model that also considers the mutual coupling effect. The proposed algorithm requires the voltages and currents from single-terminal data only and does not require adjacent circuit current data. The fault distance can be simply determined by solving a second-order polynomial equation, which is achieved directly through the analysis of the circuit. The algorithm, which employs the faulted phase network and zero-sequence network with source impedance involved, effectively eliminates the effect of load flow and fault resistance on the accuracy of fault location. The proposed algorithm is tested using MATLAB/Simulink under different fault locations and shows high accuracy. The uncertainty of source impedance and the measurement errors are also included in the simulation and shows that the algorithm has high robustness.

Analysis on Induced Current Density Inside Human Body of Hot-Line Worker for 765kV Double Circuit Transmission Line (765 kV 2회선 송전선의 활선 작업자 인체내부 유도전류 밀도 해석)

  • Min, Suk-Won;Song, Ki-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2004.11b
    • /
    • pp.46-50
    • /
    • 2004
  • This paper analysed the induced current density inside human body of hot-line worker for 765kV double circuit transmission line according to locations of human body Human was modelled by several organs, which included brain, heart, lungs, liver and intestines. We applied the 3 dimensional boundary element method to calculate induced electric fields.

  • PDF

Advanced Distance Relaying of on a Double Circuit Transmission Line (병행 2회선 송전선로의 개선된 거리계전기법)

  • Park, Chul-Won
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.8
    • /
    • pp.23-31
    • /
    • 2015
  • This paper proposes an advanced distance relaying based on the DC offset removal filter to minimize the effects of DC offset on a double circuit transmission line. The proposed DC offset removal filter uses only one cycle of data for phasor extraction computation, which does not need to preset the time constant of the DC offset component. This proposed distance relaying uses not only the residual current of the faulted circuit but also mutual current of the healthy adjacent circuit. A series of off-line test results using ATP simulation data show the effectiveness of the an advanced distance relaying.