• Title/Summary/Keyword: Failure data

Search Result 3,986, Processing Time 0.027 seconds

Reliability Assessment of Machine Tools Using Failure Mode Analysis Programs (고장모드 분석 프로그램을 통한 공작기계의 신뢰성 평가)

  • Kim Bong-Suk;Lee Soo-Hun;Song Jun-Yeob;Lee Seung-Woo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.1
    • /
    • pp.15-23
    • /
    • 2005
  • For reliability assessment for machine tools, failure mode analyses by two viewpoints were studied in this paper. First, this study developed the reliability data analysis program, which searches f3r optimal failure distribution like failure rate or MTBF(Mean Time Between Failure) using failure data and reliability test data of mechanical parts in the web. Moreover, this data analysis program saves both failure data or reliability data and their failure rate or MTBF for database establishment. Second, this paper conducted failure mode analysis through such performance tests as circular movement test and vibration testing for machine tools when reliability data is not available. A developed web-based analysis program shows correlations between failure mode and performance test result and also accumulates all the data. These kinds of data analysis programs and stored data furnish valuable information for improving the reliability of mechanical system.

Discovery of and Recovery from Failure in a Costal Marine USN Service

  • Ceong, Hee-Taek;Kim, Hae-Jin;Park, Jeong-Seon
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.1
    • /
    • pp.11-20
    • /
    • 2012
  • In a marine ubiquitous sensor network (USN) system using expensive sensors in the harsh ocean environment, it is very important to discover failures and devise recovery techniques to deal with such failures. Therefore, in order to perform failure modeling, this study analyzes the USN-based real-time water quality monitoring service of the Gaduri Aqua Farms at Songdo Island of Yeosu, South Korea and devises methods of discovery and recovery of failure by classifying the types of failure into system element failure, communication failure, and data failure. In particular, to solve problems from the perspective of data, this study defines data integrity and data consistency for use in identifying data failure. This study, by identifying the exact type of failure through analysis of the cause of failure, proposes criteria for performing relevant recovery. In addition, the experiments have been made to suggest the duration as to how long the data should be stored in the gateway when such a data failure occurs.

Scalable Approach to Failure Analysis of High-Performance Computing Systems

  • Shawky, Doaa
    • ETRI Journal
    • /
    • v.36 no.6
    • /
    • pp.1023-1031
    • /
    • 2014
  • Failure analysis is necessary to clarify the root cause of a failure, predict the next time a failure may occur, and improve the performance and reliability of a system. However, it is not an easy task to analyze and interpret failure data, especially for complex systems. Usually, these data are represented using many attributes, and sometimes they are inconsistent and ambiguous. In this paper, we present a scalable approach for the analysis and interpretation of failure data of high-performance computing systems. The approach employs rough sets theory (RST) for this task. The application of RST to a large publicly available set of failure data highlights the main attributes responsible for the root cause of a failure. In addition, it is used to analyze other failure characteristics, such as time between failures, repair times, workload running on a failed node, and failure category. Experimental results show the scalability of the presented approach and its ability to reveal dependencies among different failure characteristics.

Synthesizing Failure Data of Pump in PCB Manufacturing using Bayesian Method (베이지안 방법을 이용한 PCB 제조공정의 펌프 고장 데이터 합성)

  • Woo, Jeong Jae;Kim, Min Hwan;Chu, Chang Yeop;Baek, Jong Bae
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.1
    • /
    • pp.79-86
    • /
    • 2020
  • Failure data that has systematically managed for a long time has high reliability to an estimated volume. But since much cost and effort are needed to secure reliability data, data from overseas country is used in quantitative risk analysis in many workplaces. Reliability of the data that can be collected in workplaces can be dropped because of insufficient sample or lack of observation time. Therefore, estimated data is difficult to use as it is and environment and characteristic of the workplace cannot be reflected by using data from overseas country. So this study used Bayesian method that can be used reflecting both reliability data from overseas country and workplace failure data that has less samples. As a setting toward difficult situation that securing sufficient failure data cannot be achieved, we composed workplace failure data equivalent to mass observation time 20%(t=17000), 40%(t=24000), 60%(t=31000), 80%(t=38000) and IEEE data by using Bayesian method.

Modeling of Rate-of-Occurrence-of-Failure According to the Failure Data Type of Water Distribution Cast Iron Pipes and Estimation of Optimal Replacement Time Using the Modified Time Scale (상수도 주철 배수관로의 파손자료 유형에 따른 파손율 모형화와 수정된 시간척도를 이용한 최적교체시기의 산정)

  • Park, Su-Wan;Jun, Hwan-Don;Kim, Jung-Wook
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.1 s.174
    • /
    • pp.39-50
    • /
    • 2007
  • This paper presents applications of the log-linear ROCOF(rate-of-occurrence-of-failure) and the Weibull ROCOF to model the failure rate of individual cast iron pipes in a water distribution system and provides a method of estimating the economically optimal replacement time of the pipes using the 'modified time-scale'. The performance of the two ROCOFs is examined using the maximized log-likelihood estimates of the ROCOFs for the two types of failure data: 'failure-time data' and 'failure-number data'. The optimal replacement time equations for the two models are developed by applying the 'modified time-scale' to ensure the numerical convergence of the estimated values of the model parameters. The methodology is applied to the case study water distribution cast iron pipes and it is found that the log-linear ROCOF has better modeling capability than the Weibull ROCOF when the 'failure-time data' is used. Furthermore, the 'failure-time data' is determined to be more appropriate for both ROCOFs compared to the 'failure-number data' in terms of the ROCOF modeling performances for the water mains under study, implying that recording each failure time results in better modeling of the failure rate than recording failure numbers in some time intervals.

Anomaly Detection of Big Time Series Data Using Machine Learning (머신러닝 기법을 활용한 대용량 시계열 데이터 이상 시점탐지 방법론 : 발전기 부품신호 사례 중심)

  • Kwon, Sehyug
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.2
    • /
    • pp.33-38
    • /
    • 2020
  • Anomaly detection of Machine Learning such as PCA anomaly detection and CNN image classification has been focused on cross-sectional data. In this paper, two approaches has been suggested to apply ML techniques for identifying the failure time of big time series data. PCA anomaly detection to identify time rows as normal or abnormal was suggested by converting subjects identification problem to time domain. CNN image classification was suggested to identify the failure time by re-structuring of time series data, which computed the correlation matrix of one minute data and converted to tiff image format. Also, LASSO, one of feature selection methods, was applied to select the most affecting variables which could identify the failure status. For the empirical study, time series data was collected in seconds from a power generator of 214 components for 25 minutes including 20 minutes before the failure time. The failure time was predicted and detected 9 minutes 17 seconds before the failure time by PCA anomaly detection, but was not detected by the combination of LASSO and PCA because the target variable was binary variable which was assigned on the base of the failure time. CNN image classification with the train data of 10 normal status image and 5 failure status images detected just one minute before.

A Study on Reliability Data Analysis for Components of Machining Center (공작기계 부품의 신뢰성 데이터 해석에 관한 연구)

  • 이수훈;김종수;송준엽;이승우;박화영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.88-91
    • /
    • 2001
  • The reliability data analysis for components of CNC machining center is studied in this paper. The failure data of mechanical part is analyzed by Exponetial, Weibull, and Log-normal distributions. And then, the optimum failure distribution model is selected by goodness of fit test. The reliability data analysis program is developed using ASP language. The failure rate, MTBF, life, and failure mode of mechanical parts are estimated and searched by this program. The failure data and analysis results are stored in the database.

  • PDF

A Method for Selecting Software Reliability Growth Models Using Partial Data (부분 데이터를 이용한 신뢰도 성장 모델 선택 방법)

  • Park, Yong Jun;Min, Bup-Ki;Kim, Hyeon Soo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.1
    • /
    • pp.9-18
    • /
    • 2015
  • Software Reliability Growth Models (SRGMs) are useful for determining the software release date or additional testing efforts by using software failure data. It is not appropriate for a SRGM to apply to all software. And besides a large number of SRGMs have already been proposed to estimate software reliability measures. Therefore selection of an optimal SRGM for use in a particular case has been an important issue. The existing methods for selecting a SRGM use the entire collected failure data. However, initial failure data may not affect the future failure occurrence and, in some cases, it results in the distorted result when evaluating the future failure. In this paper, we suggest a method for selecting a SRGM based on the evaluation goodness-of-fit using partial data. Our approach uses partial data except for inordinately unstable failure data in the entire failure data. We will find a portion of data used to select a SRGM through the comparison between the entire failure data and the partial failure data excluded the initial failure data with respect to the predictive ability of future failures. To justify our approach this paper shows that the predictive ability of future failures using partial data is more accurate than using the entire failure data with the real collected failure data.

Failure Analysis to Derive the Causes of Abnormal Condition of Electric Locomotive Subsystem (센서 데이터를 이용한 전기 기관차의 이상 상태 요인분석)

  • So, Min-Seop;Jun, Hong-Bae;Shin, Jong-Ho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.2
    • /
    • pp.84-94
    • /
    • 2018
  • In recent years, the diminishing of operation and maintenance cost using advanced maintenance technology is attracting many companies' attention. Especially, the heavy machinery industry regards it as a crucial problem since a failure of heavy machinery requires high cost and long downtime. To improve the current maintenance process, the heavy machinery industry tries to develop a methodology to predict failure in advance and to find its causes using usage data. A better analysis of failure causes requires more data so that various kinds of sensor are attached to machines and abundant amount of product usage data is collected through the sensor network. However, the systemic analysis of the collected product usage data is still in its infant stage. Many previous works have focused on failure occurrence as statistical data for reliability analysis. There have been less works to apply product usage data into root cause analysis of product failure. The product usage data collected while failures occur should be considered failure cause analysis. To do this, this study proposes a methodology to apply product usage data into failure cause analysis. The proposed methodology in this study is composed of several steps to transform product usage into failure causes. Various statistical analysis combined with product usage data such as multinomial logistic regression, T-test, and so on are used for the root cause analysis. The proposed methodology is applied to field data coming from operated locomotive and the analysis result shows its effectiveness.

A Study on Development of Korean Failure Rate Databook (한국형 고장률 데이터 북 개발에 대한 연구)

  • Paik, Soonheum;Lim, Jae-hak
    • Journal of Applied Reliability
    • /
    • v.17 no.4
    • /
    • pp.305-315
    • /
    • 2017
  • Purpose: The purpose of this research is to propose procedure and methodology for developing failure rate databook which is suitable for Korean operation environment. Methods: To this end, we investigate failure databooks used in foreign countries and study the procedure and methodology for collecting failure data, organizing the data, estimating failure rate and summarizing results. Results: We develop the procedure of development of failure databook, the items for data collection, database schema of part details and part summary and contents of failure databook by considering the application environment in Korea. Conclusion: The results of our research could be utilized for the development of Korean failure rate databook and research of reliability prediction model and could ultimately contribute to improve the accuracy of reliability prediction.