• Title/Summary/Keyword: Finite Differential Method

Search Result 517, Processing Time 0.022 seconds

Development of a meshless finite mixture (MFM) method

  • Cheng, J.Q.;Lee, H.P.;Li, Hua
    • Structural Engineering and Mechanics
    • /
    • v.17 no.5
    • /
    • pp.671-690
    • /
    • 2004
  • A meshless method with novel variation of point collocation by finite mixture approximation is developed in this paper, termed the meshless finite mixture (MFM) method. It is based on the finite mixture theorem and consists of two or more existing meshless techniques for exploitation of their respective merits for the numerical solution of partial differential boundary value (PDBV) problems. In this representation, the classical reproducing kernel particle and differential quadrature techniques are mixed in a point collocation framework. The least-square method is used to optimize the value of the weight coefficient to construct the final finite mixture approximation with higher accuracy and numerical stability. In order to validate the developed MFM method, several one- and two-dimensional PDBV problems are studied with different mixed boundary conditions. From the numerical results, it is observed that the optimized MFM weight coefficient can improve significantly the numerical stability and accuracy of the newly developed MFM method for the various PDBV problems.

Application of differential transformation method for free vibration analysis of wind turbine

  • Bozdogan, Kanat Burak;Maleki, Farshid Khosravi
    • Wind and Structures
    • /
    • v.32 no.1
    • /
    • pp.11-17
    • /
    • 2021
  • In recent years, there has been a tendency towards renewable energy sources considering the damages caused by non-renewable energy resources to nature and humans. One of the renewable energy sources is wind and energy is obtained with the help of wind turbines. To determine the behavior of wind turbines under earthquake loads, dynamic characteristics are required. In this study, the differential transformation method is proposed to determine the free vibration analysis of wind turbines with a variable cross-section. The wind turbine is modeled as an equivalent variable continuous flexural beam and blade weight is considered as a point mass at the top of the structures. The differential equation representing the free vibration of the wind turbine is transformed into an algebraic equation with the help of differential transformation method and the angular frequencies and the mode shapes of the wind turbine are obtained by the help of the differential transformation method. In the study, a sample taken from the literature was solved with the presented method and the suitability of the method was investigated. The same wind turbine example also modeled by finite element modelling software, ABAQUS. Results of the finite element model and differential transformation method are compared with each other and the results are in good agreement.

A Generalized Finite Difference Method for Solving Fokker-Planck-Kolmogorov Equations

  • Zhao, Li;Yun, Gun Jin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.816-826
    • /
    • 2017
  • In this paper, a generalized discretization scheme is proposed that can derive general-order finite difference equations representing the joint probability density function of dynamic response of stochastic systems. The various order of finite difference equations are applied to solutions of the Fokker-Planck-Kolmogorov (FPK) equation. The finite difference equations derived by the proposed method can greatly increase accuracy even at the tail parts of the probability density function, giving accurate reliability estimations. Compared with exact solutions and finite element solutions, the generalized finite difference method showed increasing accuracy as the order increases. With the proposed method, it is allowed to use different orders and types (i.e. forward, central or backward) of discretization in the finite difference method to solve FPK and other partial differential equations in various engineering fields having requirements of accuracy or specific boundary conditions.

Harmonic differential quadrature (HDQ) for axisymmetric bending analysis of thin isotropic circular plates

  • Civalek, Omer;Ulker, Mehmet
    • Structural Engineering and Mechanics
    • /
    • v.17 no.1
    • /
    • pp.1-14
    • /
    • 2004
  • Numerical solution to linear bending analysis of circular plates is obtained by the method of harmonic differential quadrature (HDQ). In the method of differential quadrature (DQ), partial space derivatives of a function appearing in a differential equation are approximated by means of a polynomial expressed as the weighted linear sum of the function values at a preselected grid of discrete points. The method of HDQ that was used in the paper proposes a very simple algebraic formula to determine the weighting coefficients required by differential quadrature approximation without restricting the choice of mesh grids. Applying this concept to the governing differential equation of circular plate gives a set of linear simultaneous equations. Bending moments, stresses values in radial and tangential directions and vertical deflections are found for two different types of load. In the present study, the axisymmetric bending behavior is considered. Both the clamped and the simply supported edges are considered as boundary conditions. The obtained results are compared with existing solutions available from analytical and other numerical results such as finite elements and finite differences methods. A comparison between the HDQ results and the finite difference solutions for one example plate problem is also made. The method presented gives accurate results and is computationally efficient.

AN ASYMPTOTIC FINITE ELEMENT METHOD FOR SINGULARLY PERTURBED HIGHER ORDER ORDINARY DIFFERENTIAL EQUATIONS OF CONVECTION-DIFFUSION TYPE WITH DISCONTINUOUS SOURCE TERM

  • Babu, A. Ramesh;Ramanujam, N.
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.5_6
    • /
    • pp.1057-1069
    • /
    • 2008
  • We consider singularly perturbed Boundary Value Problems (BVPs) for third and fourth order Ordinary Differential Equations(ODEs) of convection-diffusion type with discontinuous source term and a small positive parameter multiplying the highest derivative. Because of the type of Boundary Conditions(BCs) imposed on these equations these problems can be transformed into weakly coupled systems. In this system, the first equation does not have the small parameter but the second contains it. In this paper a computational method named as 'An asymptotic finite element method' for solving these systems is presented. In this method we first find an zero order asymptotic approximation to the solution and then the system is decoupled by replacing the first component of the solution by this approximation in the second equation. Then the second equation is independently solved by a fitted mesh Finite Element Method (FEM). Numerical experiments support our theoritical results.

  • PDF

FINITE DIFFERENCE SCHEME FOR SINGULARLY PERTURBED SYSTEM OF DELAY DIFFERENTIAL EQUATIONS WITH INTEGRAL BOUNDARY CONDITIONS

  • SEKAR, E.;TAMILSELVAN, A.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.22 no.3
    • /
    • pp.201-215
    • /
    • 2018
  • In this paper we consider a class of singularly perturbed system of delay differential equations of convection diffusion type with integral boundary conditions. A finite difference scheme on an appropriate piecewise Shishkin type mesh is suggested to solve the problem. We prove that the method is of almost first order convergent. An error estimate is derived in the discrete maximum norm. Numerical experiments support our theoretical results.

NUMERICAL METHOD FOR A SYSTEM OF CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS WITH NON-LOCAL BOUNDARY CONDITIONS

  • S. Joe Christin Mary;Ayyadurai Tamilselvan
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.281-298
    • /
    • 2023
  • A class of systems of Caputo fractional differential equations with integral boundary conditions is considered. A numerical method based on a finite difference scheme on a uniform mesh is proposed. Supremum norm is used to derive an error estimate which is of order κ − 1, 1 < κ < 2. Numerical examples are given which validate our theoretical results.

A coupled Ritz-finite element method for free vibration of rectangular thin and thick plates with general boundary conditions

  • Eftekhari, Seyyed A.
    • Steel and Composite Structures
    • /
    • v.28 no.6
    • /
    • pp.655-670
    • /
    • 2018
  • A coupled method, that combines the Ritz method and the finite element (FE) method, is proposed to solve the vibration problem of rectangular thin and thick plates with general boundary conditions. The eigenvalue partial differential equation(s) of the plate is (are) first reduced to a set of eigenvalue ordinary differential equations by the application of the Ritz method. The resulting eigenvalue differential equations are then reduced to an eigenvalue algebraic equation system using the finite element method. The natural boundary conditions of the plate problem including the free edge and free corner boundary conditions are also implemented in a simple and accurate manner. Various boundary conditions including simply supported, clamped and free boundary conditions are considered. Comparisons with existing numerical and analytical solutions show that the proposed mixed method can produce highly accurate results for the problems considered using a small number of Ritz terms and finite elements. The proposed mixed Ritz-FE formulation is also compared with the mixed FE-Ritz formulation which has been recently proposed by the present author and his co-author. It is found that the proposed mixed Ritz-FE formulation is more efficient than the mixed FE-Ritz formulation for free vibration analysis of rectangular plates with Levy-type boundary conditions.

Practical SPICE Model for IGBT and PiN Diode Based on Finite Differential Method

  • Cao, Han;Ning, Puqi;Wen, Xuhui;Yuan, Tianshu
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1591-1600
    • /
    • 2019
  • In this paper, a practical SPICE model for an IGBT and a PiN diode is proposed based on the Finite Differential Method (FDM). Other than the conventional Fourier model and the Hefner model, the excess carrier distribution can be accurately solved by a fast FDM in the SPICE simulation tool. In order to improve the accuracy of the SPICE model, the Taguchi method is adopted to calibrate the extracted parameters. This paper presents a numerical modelling approach of an IGBT and a PIN diode, which are also verified by SPICE simulations and experiments.

ERROR ANALYSIS OF FINITE ELEMENT APPROXIMATION OF A STEFAN PROBLEM WITH NONLINEAR FREE BOUNDARY CONDITION

  • Lee H.Y.
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.223-235
    • /
    • 2006
  • By applying the Landau-type transformation, we transform a Stefan problem with nonlinear free boundary condition into a system consisting of a parabolic equation and the ordinary differential equations. Fully discrete finite element method is developed to approximate the solution of a system of a parabolic equation and the ordinary differential equations. We derive optimal orders of convergence of fully discrete approximations in $L_2,\;H^1$ and $H^2$ normed spaces.