• Title/Summary/Keyword: H-functions

Search Result 2,108, Processing Time 0.026 seconds

INTEGRAL REPRESENTATIONS FOR SRIVASTAVA'S HYPERGEOMETRIC FUNCTION HC

  • Choi, Junesang;Hasanov, Anvar;Turaev, Mamasali
    • Honam Mathematical Journal
    • /
    • v.34 no.4
    • /
    • pp.473-482
    • /
    • 2012
  • While investigating the Lauricella's list of 14 complete second-order hypergeometric series in three variables, Srivastava noticed the existence of three additional complete triple hypergeo-metric series of the second order, which were denoted by $H_A$, $H_B$ and $H_C$. Each of these three triple hypergeometric functions $H_A$, $H_B$ and $H_C$ has been investigated extensively in many different ways including, for example, in the problem of finding their integral representations of one kind or the other. Here, in this paper, we aim at presenting further integral representations for the Srivatava's triple hypergeometric function $H_C$.

INTEGRAL REPRESENTATIONS FOR SRIVASTAVA'S HYPERGEOMETRIC FUNCTION HA

  • Choi, June-Sang;Hasanov, Anvar;Turaev, Mamasali
    • Honam Mathematical Journal
    • /
    • v.34 no.1
    • /
    • pp.113-124
    • /
    • 2012
  • While investigating the Lauricella's list of 14 complete second-order hypergeometric series in three variables, Srivastava noticed the existence of three additional complete triple hypergeometric series of the second order, which were denoted by $H_A$, $H_B$ and $H_C$. Each of these three triple hypergeometric functions $H_A$, $H_B$ and $H_C$ has been investigated extensively in many different ways including, for example, in the problem of finding their integral representations of one kind or the other. Here, in this paper, we aim at presenting further integral representations for the Srivatava's triple hypergeometric function $H_A$.

INTEGRAL REPRESENTATIONS FOR SRIVASTAVA'S HYPERGEOMETRIC FUNCTION HB

  • Choi, June-Sang;Hasanov, Anvar;Turaev, Mamasali
    • The Pure and Applied Mathematics
    • /
    • v.19 no.2
    • /
    • pp.137-145
    • /
    • 2012
  • While investigating the Lauricella's list of 14 complete second-order hypergeometric series in three variables, Srivastava noticed the existence of three additional complete triple hypergeometric series of the second order, which were denoted by $H_A$, $H_B$ and $H_C$. Each of these three triple hypergeometric functions $H_A$, $H_B$ and $H_C$ has been investigated extensively in many different ways including, for example, in the problem of finding their integral representations of one kind or the other. Here, in this paper, we aim at presenting further integral representations for the Srivatava's triple hypergeometric function $H_B$.

FURTHER ON PETROVIĆ'S TYPES INEQUALITIES

  • IQBAL, WASIM;REHMAN, ATIQ UR;FARID, GHULAM;RATHOUR, LAXMI;SHARMA, M.K.;MISHRA, VISHNU NARAYAN
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.5_6
    • /
    • pp.1021-1034
    • /
    • 2022
  • In this article, authors derived Petrović's type inequalities for a class of functions, namely, called exponentially h-convex functions. Also, the associated results for coordinates has been derived by defining exponentially h-convex functions on coordinates.

EXTENDED HERMITE-HADAMARD(H-H) AND FEJER'S INEQUALITIES BASED ON GEOMETRICALLY-s-CONVEX FUNCTIONS IN THIRD AND FOURTH SENSE

  • SABIR YASIN;MASNITA MISIRAN;ZURNI OMAR;RABIA LUQMAN
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.5
    • /
    • pp.963-972
    • /
    • 2023
  • In this paper, geometrically convex and s-convex functions in third and fourth sense are merged to form (g, s)-convex function. Characterizations of (g, s)-convex function, algebraic and functional properties are presented. In addition, novel functions based on the integral of (g, s)-convex functions in the third sense are created, and inequality relations for these functions are explored and examined under particular conditions. Further, there are also some relationships between (g, s)-convex function and previously defined functions. The (g, s)-convex function and its derivatives will then be used to extend the well-known H-H and Fejer's type inequalities. In order to obtain the previously mentioned conclusions, several special cases from previous literature for extended H-H and Fejer's inequalities are also investigated. The relation between the average (mean) values and newly created H-H and Fejer's inequalities are also examined.

THE q-ANALOGUE OF TWISTED LERCH TYPE EULER ZETA FUNCTIONS

  • Jang, Lee-Chae
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.6
    • /
    • pp.1181-1188
    • /
    • 2010
  • q-Volkenborn integrals ([8]) and fermionic invariant q-integrals ([12]) are introduced by T. Kim. By using these integrals, Euler q-zeta functions are introduced by T. Kim ([18]). Then, by using the Euler q-zeta functions, S.-H. Rim, S. J. Lee, E. J. Moon, and J. H. Jin ([25]) studied q-Genocchi zeta functions. And also Y. H. Kim, W. Kim, and C. S. Ryoo ([7]) investigated twisted q-zeta functions and their applications. In this paper, we consider the q-analogue of twisted Lerch type Euler zeta functions defined by $${\varsigma}E,q,\varepsilon(s)=[2]q \sum\limits_{n=0}^\infty\frac{(-1)^n\epsilon^nq^{sn}}{[n]_q}$$ where 0 < q < 1, $\mathfrak{R}$(s) > 1, $\varepsilon{\in}T_p$, which are compared with Euler q-zeta functions in the reference ([18]). Furthermore, we give the q-extensions of the above twisted Lerch type Euler zeta functions at negative integers which interpolate twisted q-Euler polynomials.

HADAMARD-TYPE INEQUALITIES ON THE COORDINATES FOR (h1, h2, h2)-PREINVEX FUNCTIONS

  • Danish Malik;Zamrooda Jabeen
    • Korean Journal of Mathematics
    • /
    • v.32 no.3
    • /
    • pp.453-466
    • /
    • 2024
  • In the present paper, we define the class of (h1, h2, h2)-preinvex functions on co-ordinates and prove certain new Hermite-Hadamard and Fejér type inequalities for such mappings. As a consequence, we derive analogous Hadamard-type results on convex and s-convex functions in three co-ordinates. We also discuss some intriguing aspects of the associated H function.

NEW INEQUALITIES FOR GENERALIZED LOG h-CONVEX FUNCTIONS

  • NOOR, MUHAMMAD ASLAM;NOOR, KHALIDA INAYAT;SAFDAR, FARHAT
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.3_4
    • /
    • pp.245-256
    • /
    • 2018
  • In the paper, we introduce some new classes of generalized logh-convex functions in the first sense and in the second sense. We establish Hermite-Hadamard type inequality for different classes of generalized convex functions. It is shown that the classes of generalized log h-convex functions in both senses include several new and known classes of log h convex functions. Several special cases are also discussed. Results proved in this paper can be viewed as a new contributions in this area of research.

ON THE ANALYTIC PART OF HARMONIC UNIVALENT FUNCTIONS

  • FRASIN BASEM AREF
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.3
    • /
    • pp.563-569
    • /
    • 2005
  • In [2], Jahangiri studied the harmonic starlike functions of order $\alpha$, and he defined the class T$_{H}$($\alpha$) consisting of functions J = h + $\bar{g}$ where hand g are the analytic and the co-analytic part of the function f, respectively. In this paper, we introduce the class T$_{H}$($\alpha$, $\beta$) of analytic functions and prove various coefficient inequalities, growth and distortion theorems, radius of convexity for the function h, if the function J belongs to the classes T$_{H}$($\alpha$) and T$_{H}$($\alpha$, $\beta$).

DECOMPOSITION FORMULAS AND INTEGRAL REPRESENTATIONS FOR SOME EXTON HYPERGEOMETRIC FUNCTIONS

  • Choi, Junesang;Hasanov, Anvar;Turaev, Mamasali
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.4
    • /
    • pp.745-758
    • /
    • 2011
  • Generalizing the Burchnall-Chaundy operator method, the authors are aiming at presenting certain decomposition formulas for the chosen six Exton functions expressed in terms of Appell's functions $F_3$ and $F_4$, Horn's functions $H_3$ and $H_4$, and Gauss's hypergeometric function F. We also give some integral representations for the Exton functions $X_i$ (i = 6, 8, 14) each of whose kernels contains the Horn's function $H_4$.