• Title/Summary/Keyword: KOH

Search Result 8,342, Processing Time 0.049 seconds

Effect of KOH Concentrations and Pyrolysis Temperatures for Enhancing NH4-N Adsorption Capacity of Rice Hull Activated Biochar (KOH 농도 및 탄화온도가 왕겨 활성 바이오차의 NH4-N 흡착능 향상에 미치는 영향)

  • Kim, HuiSeon;Yun, Seok-In;An, NanHee;Shin, JoungDu
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.3
    • /
    • pp.171-177
    • /
    • 2020
  • BACKGROUND: Recently, biomass conversion from agricultural wastes to carbon-rich materials such as biochar has been recognized as a promising option to maintain or increase soil productivity, reduce nutrient losses, and mitigate greenhouse gas emissions from the agro-ecosystem. This experiment was conducted to select an optimum conditions for enhancing the NH4-N adsorption capacity of rice hull activated biochar. METHODS AND RESULTS: For deciding the proper molarity of KOH for enhancing its porosity, biochars treated with different molarity of KOH (0, 1, 2, 4, 6, 8) were carbonized at 600℃ in the reactor. The maximum adsorption capacity was 1.464 mg g-1, and an optimum molarity was selected to be 6 M KOH. For the effect of adsorption capacity to different carbonized temperatures, 6 M KOH-treated biochar was carbonized at 600℃ and 800℃ under the pyrolysis system. The result has shown that the maximum adsorption capacity was 1.76 mg g-1 in the rice hull activated biochar treated with 6 M KOH at 600℃ of pyrolysis temperature, while its non-treated biochar was 1.17 mg g-1. The adsorption rate in the rice hull activated biochar treated with 6 M KOH at 600℃ was increased at 62.18% compared to that of the control. Adsorption of NH4-N in the rice hull activated biochar was well suited for the Langmuir model because it was observed that dimensionless constant (RL) was 0.97 and 0.66 at 600℃ and 800℃ of pyrolysis temperatures, respectively. The maximum adsorption amount (qm) and the bond strength constants (b) were 0.092 mg g-1 and 0.001 mg L-1, respectively, for the rice hull activated biochar treated with 6 M KOH at 600℃ of pyrolysis. CONCLUSION: Optimum condition of rice hull activated biochar was 6M KOH at 600℃ of pyrolysis temperature.

A study on anisotropic etching property of single-crystal silicon using KOH solution (KOH 용액을 이용한 단결정 실리콘의 이방성 식각특성에 관한 연구)

  • 김환영;천인호;김창교;조남인
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.3
    • /
    • pp.449-455
    • /
    • 1997
  • The anisotropic etching behavior of single crystal silicon were studied in aqueous KOH solution. N-type (100) oriented single crystal silicon wafers were used for the study, and the $SiO_2$ layer, whose etching rate is known to be much slower than that of silicon in the KOH solution, was used as a mask for the silicon etching. The silicon etching rate and the etching properties are shown to be a function of etchant temperature uniformity, circulation speed, and circulation direction of the etchant as well as the etchant concentration and the temperature. The etching rate is increased as the temperature is increased from $10\mu \textrm{m}/hr$ to $250\mu \textrm{m}/hr$ in the range of $50^{\circ}C~105^{\circ}C$. Hillock density and height is observed to be correlated with the etchant concentration and the etch temperature. The variation of the hillock density was explained by the ratio between the etching rate of (100) orientation and that of (111) orientation.

  • PDF

Influence of KOH Activation on Electrochemical Performance of Coal Tar Pitch-based Activated Carbons for Supercapacitor (KOH 활성화가 슈퍼커패시터용 콜타르 피치 활성탄소의 전기화학적 성능에 미치는 영향)

  • Huh, Ji-Hoon;Seo, Min-Kang;Kim, Hak-Yong;Kim, Ick-Jun;Park, Soo-Jin
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.756-760
    • /
    • 2012
  • In this work, the coal tar pitch-based activated carbons (ACs) were prepared by KOH activation for electrode materials of supercapacitor. The effects of activation temperature on electrochemical performance of the ACs were investigated with cyclic voltammogram (CV) measurement. The textural and morphological properties of the ACs were measured by adsorption isotherms and field emission scanning electron microscope (FE-SEM) analyses, respectively. The experimental results indicated that the specific capacitance of the ACs increased with developing the micropore volume by activation temperature. As a result the specific capacitance of the ACs increased, owing to the development of micro pore volume of the ACs.

Hydrogen Evolution Rates of the Aluminum-Air Unit Cell (알루미늄-공기 단위전지의 수소발생속도)

  • Shim Eun-Gi;Doh Chil-Hoon;Moon Seong-In;Hwang Young-Gi
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.4
    • /
    • pp.166-171
    • /
    • 2001
  • In an aluminum-air unit cell used alkaline solution, Hydrogen evolution rates were investigated far the observation of the effects of alloy element, inhibitor and its concentration in electrolyte, KOH concentration, solution temperature, and current density loaded to cell. Hydrogen evolution rates were reduced up to $50\%$ by saturating the solution with ZnO, while ZnAc(Zinc Acetate) did not work as inhibitor. The inhibition effect of ZnO increased with increasing the KOH concentration and solution temperature. They were linearly increased with the KOH concentration and current density in first order and exponentially increased with the solution temperature.

Measurement of the Corrosion Rate of Aluminum in Alkaline Solution (알칼리 용액에서 알루미늄의 부식속도 측정)

  • Shim Eun-Gi;Hwang Young-Gi;Chun Hai-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.3
    • /
    • pp.117-122
    • /
    • 1999
  • This study investigated the corrosion rate of aluminum in alkaline solution. It was performed to observe the effects of alloy element, alkalinity (KOH concentration), solution temperature, and inhibitor and its concentration in the solution. Among species of aluminum, AA-1050 showed the lowest corrosion rate due to its high purity $(>199\%)$, whereas alloys containing Mg anuor Mn were highly corroded, relatively. The corrosion rate could be reduced over than $50\%$ by saturating the solution with ZnO, while ZnAc did not work as an inhibitor. The inhibition effect of ZnO increased with increasing the alkalinity and solution temperature. It was found that the corrosion rate linearly increased with the concentration of KOH in first order and exponentially decreased with the inverse of the solution temperature. An analysis of the corroded material covered the surface of aluminum was made by SEM and EDS. According to the analytical results by using XRD, it was confirmed that $Al(OH)_3$ was produced from the corrosion of aluminum in KOH solution.

Electrochemical Properties of Activated Carbon Supecapacitor Adopting Poly(acrylonitrile) Separator Coated by Polymer-Alkaline Electrolytes (고분자-알칼리 전해질이 코팅된 Poly(acrylonitrile) 분리막을 적용한 활성탄 수퍼커패시터 특성)

  • Kim, Kwang Man;Lee, Young-Gi;Ko, Jang Myoun
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.467-472
    • /
    • 2017
  • Alkaline electrolytes consisting of 6 M KOH and polymer (PEO, PVA, and PAAK) are coated on PAN nonwoven fabrics as a separator, and the electrochemical properties of the activated carbon supercapacitor adopting them are investigated in terms of redox behavior, specific capacitance, and interfacial impedance. Although the interaction between polymer and KOH are comparatively inactive in PEO and PVA, PAAK (3 wt.%)-KOH forms a hydrogel phase by active interactions between $COO^-K^+$ in side-chain of PAAK and $K^+OH^-$ from alkaline electrolyte solution, improving ionic conduction of electrolytes and the electrochemical properties of the supercapacitor. As a result, the activated supercapacitor adopting the PAAK-KOH shows the superior specific capacitance of $46.8Fg^{-1}$ at $100mVs^{-1}$.

Comparison of Sodium Hypochiorite and Potassium Hydroxide as Seed Treatment for Stimulating Germination of Korean Lawngrass (Zoysia japonica Steud.) Seed (한국잔디종자의 발아촉진을 위한 Sodium Hypochlorite와 Potassium Hydroxide 처리효과의 비교)

  • 구자형;원동찬;김태일
    • Asian Journal of Turfgrass Science
    • /
    • v.2 no.1
    • /
    • pp.41-48
    • /
    • 1988
  • Research was conducted to obtain easy and secure methods for promoting germination of Korean lawngrass (Zoysia japonic a Steud.) seed. The effect of sodium hypochiorite (NaOCl) treatment on germination of seeds was compared with that of potassium hydroxide (KOH) treatment under conditions of duration of seed storage after harvest and temperature of treatment. Emergence of seedlings from soil and micro-flora infection rate among seed treatments were investigated. 1. The promotion of germination was much more evident in seeds treated with 4% NaOCl for 8 and 10 hours than in seeds treated with 25% or 30% KOH for 30 and 40 minutes. Longer durations of storage before seed treatment in KOH than in NaOCl were required to initiate enough germination. 2. Differences in temperature of treatment with NaOCT did not have much influence on germination of seeds and treatment temperature of 15˚C was better than that of 200˚C and 300˚C for promoting germination. But seed treatment with KOH significantly promoted germination with increasing temperature of treatment from I 5˚C to 20˚C and 30˚C. 3. GA$_3$ treatment enhanced germination in NaOCl-pretreated seeds at early stage of imbibition and in-creased about 10% germination after 10 days of imbibition in KOH-pretreated seeds. 4. NaOC1 treatments significantly decreased the rate of the infection of microflora in seed samples and enhaced emergence of seedlings from soil compared with KOH treatment. 5. NaOC1 treatment had advantage over KOH treatment with respect to ease of preparing, securing and handling in stimulating germinating of Korean lawngrass seeds.

  • PDF

The molten KOH/NaOH wet chemical etching of HVPE-grown GaN (HVPE로 성장된 GaN의 용융 KOH/NaOH 습식화학에칭)

  • Park, Jae Hwa;Hong, Yoon Pyo;Park, Cheol Woo;Kim, Hyun Mi;Oh, Dong Keun;Choi, Bong Geun;Lee, Seong Kuk;Shim, Kwang Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.4
    • /
    • pp.135-139
    • /
    • 2014
  • The hydride vapor phase epitaxy (HVPE) grown GaN samples to precisely measure the surface characteristics was applied to a molten KOH/NaOH wet chemical etching. The etching rate by molten KOH/NaOH wet chemical etching method was slower than that by conventional etching methods, such as phosphoric and sulfuric acid etching, which may be due to the formation of insoluble coating layer. Therefore, the molten KOH/NaOH wet chemical etching is a better efficient method for the evaluation of etch pits density. The grown GaN single crystals were characterized by using X-ray diffraction (XRD) and X-ray rocking curve (XRC). The etching characteristics and surface morphologies were studied by scanning electron microscopy (SEM). From etching results, the optimum etching condition that the etch pits were well independently separated in space and clearly showed their shape, was $410^{\circ}C$ and 25 min. The etch pits density obtained by molten KOH/NaOH wet chemical etching under optimum etching condition was around $2.45{\times}10^6cm^{-2}$, which is commercially an available materials.