• Title/Summary/Keyword: Metal oxide addition

Search Result 302, Processing Time 0.03 seconds

Role of Added Metal Oxide in the Adherence Mechanism of Low Melting Glass to Several Metal Seals (저융점유리와 각종금속과의 봉착기구에 있어서 금속산화물의 역할)

  • 정창주
    • Journal of the Korean Ceramic Society
    • /
    • v.11 no.1
    • /
    • pp.3-9
    • /
    • 1974
  • The role of added metal oxide in the adherence mechanism of low melting glass to several metal plates such as oxygen free high conducting copper, low carbon steel, chrominum galvanized on copper, and stainless steel was investigated. The metal oxide which added to glass were cupric oxide, ferric oxide, chromic oxide, and stainless steel oxide. The glass to that various metla oxide were added, sealed with several metal plates in the electric furnace at $650^{\circ}C$ for 5 minutes. The results as follows; 1) The interfacial reaction was promoted and strong chemical bonding with glass and metals by which the surface energy was decreased showed excellent sealing by addition of metal oxide. 2) When the interfacial reaction of glass and metals was promoted by addition of metal oxide found out that various adhernece mechanism were related to the sealing. 3) When the amount of metal oxide addition was 3-5% the excellent sealing was achieved.

  • PDF

The Effects of binary metal oxide catalysts for the synthesis of glycerol carbonate (이원계 금속산화물 촉매가 글리세롤카보네이트 합성에 미치는 영향)

  • Baek, Jae-Ho;Moon, Myung-Jun;Lee, Man-Sig
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.1
    • /
    • pp.456-461
    • /
    • 2012
  • The glycerol carbonate was synthesized by glycerol and urea using metal oxide catalysts. The physical properties of the prepared metal oxide catalysts were investigated by X-ray diffraction (XRD), specific surface area analysis (BET), field emission scanning electron microscopy (FE-SEM) and temperature programmed desorption (TPD). In addition, we confirmed the conversion of the glycerol and the yield of the glycerol carbonate according to characteristics of metal oxide catalysts. From XRD and FE-SEM analysis, the crystallite size and crystallinity of metal oxide catalysts decrease with addition of Al. In addition, the Zn-Al mixed metal oxide had higher catalytic activity than the pure ZnO due to decreased side reaction in the synthesis of glycerol carbonate.

1-D and 2-D Metal Oxide Nanostructures

  • Son, Yeong-Gu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.87-88
    • /
    • 2012
  • Metal oxide nanostructures have been applied to various fields such as energy, catalysts and electronics. We have freely designed one and two-dimensional (1 and 2-D) metal (transition metals and lanthanides) oxide nanostructures, characterized them using various techniques including scanning electron microscopy, transmission electron microscopy, X-ray diffraction crystallography, thermogravimetric analysis, FT-IR, UV-visible-NIR absorption, Raman, photoluminescence, X-ray photoelectron spectroscopy, and temperature-programmed thermal desorption (reaction) mass spectrometry. In addition, Ag- and Au-doped metal oxides will be discussed in this talk.

  • PDF

The Effect of Misch Metal on the Microstructure of Rapidly solidified Ag-Sn-In Alloys (급속응고한 Ag-Sn-In 합금의 미세조직에 미치는 Misch Metal의 영향)

  • Chang, Dae-Jung;Nam, Tae-Woon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.6
    • /
    • pp.561-565
    • /
    • 2007
  • Because of a good wear resistance and a stable contact resistance, Ag-CdO is widely used as electrical contact material. But, the Cd-oxide mainly exists as a coarse particle and adversely affected to environment. As a reason, $Ag-SnO_2$ alloy has been developed. The Sn-oxide maintains stable and fine particle even at high temperature. In order to investigate the effect of Misch metal (Mm) additional that affects the formation of the oxide and the formation of fine matrix Ag, we studied the microstructures and properties of Ag-Sn-In(-Mm) material fabricated by rapid solidification process. The experimental procedure were melting using high frequency induction, melt spinning, and internal oxidation. The Mm addition makes Ag matrix more fine than no Mm addition. The reason is that the addition of Misch metal decreased a latent heat of fusion of alloy, as a result the rapid solidification effect of alloy is increased. The maximum hardness shows at 0.3 wt%Mm. after that the hardness is decreased until 0.4 wt% Mm, but still larger than no Mm addition alloy. At 0.5 wt% Mm alloy, the precipitation of Misch metal causes a decrease of hardness than no Mm addition alloy.

Study of the Hole Trapping in the Gate Oxide Due to the Metal Antenna Effect (Metal Antenna 효과로 인한 게이트 산화막에서 정공 포획에 관한 연구)

  • 김병일;신봉조박근형이형규
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.549-552
    • /
    • 1998
  • Recently, the gate oxide damage induced by the plasma processes has been one of the most significant reliability issues as the gate oxide thickness falls below 10 nm. The process-induced damage was studied with the metal antenna test structures. In addition to the electron trapping, the hole trapping in a 10 nm thick gate oxide due to the plasma-induced charging was observed in the NMOS's with a metal antenna. The hole trapping gave rise to the decrease of the transconductance (gm) similarly to the case of the electron trapping, but to the extent much less than the electron trapping. It would be because the electrical stress that the plasma-induced charging forced to the gate oxide for the devices with the hole trapping was much smaller than for those with the electron trapping. This hypothesis was strongly supported by the measured characteristics of the Fowler-Nordheim current in the gate oxide.

  • PDF

Electrical Conductivity Change of Manganese oxide with Addition of Transition Metal (천이금속 첨가에 따른 이산화망간의 전기전도도 변화)

  • Kim, Bong-Seo;Lee, Dong-Yoon;Lee, Hee-Woong;Chung, Won-Sub
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2028-2030
    • /
    • 2005
  • The electrical conductivity of manganese oxide and complex manganese oxide produced by anodic deposition method was measured. The additive transition metal is Cu, Co and Fe. The transition metals like as Cu, Co and Fe improved electrical conductivity of complex manganese oxide compared with manganese oxide. This is coincide with the results of molecular orbital calculation by DV-Xa.

  • PDF

Hydrogenation Properties on MgHx-Sc2O3 Composites by Mechanical Alloying (MgHx-Sc2O3 복합재료의 수소화 특성)

  • Kim, Kyeong-Il;Kim, Yong-Sung;Hong, Tae-Whan
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.2
    • /
    • pp.81-88
    • /
    • 2010
  • Hydrogen energy applications have recognized clean materials and high energy carrier. Accordingly, Hydrogen energy applies for fuel cell by Mg and Mg-based materials. Mg and Mg-based materials are lightweight and low cost materials with high hydrogen storage capacity. However, commercial applications of the Mg hydride are currently hinder by its high absorption/desorption temperature, and very slow reaction kinetics. Therefore one of the most methods to improve kinetics focused on addition transition metal oxide. Addition to transition metal oxide in $MgH_x$ powder produce $MgH_x$-metal oxide composition by mechanical alloy and it analyze XRD, EDS, TG/DSC, SEM, and PCT. This report considers kinetics by transition metal oxide rate and Hydrogen pressure. In this research, we can see behavior of hydriding/dehydriding profiles by addition catalyst (transition metal oxide). Results of PCI make a excellent showing $MgH_x$-5wt.% Sc2O3 at 623K, $MgH_x$-10wt.% $Sc_2O_3$ at 573K.

Design of Metal Oxide Hollow Structures Using Soft-templating Method for High-Performance Gas Sensors

  • Shim, Young-Seok;Jang, Ho Won
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.178-183
    • /
    • 2016
  • Semiconductor gas sensors based on metal oxide are widely used in a number of applications, from health and safety to energy efficiency and emission control. Nanomaterials including nanowires, nanorods, and nanoparticles have dominated the research focus in this field owing to their large number of surface sites that facilitate surface reactions. Recently, metal oxide hollow structures using soft templates have been developed owing to their high sensing properties with large-area uniformity. Here, we provide a brief overview of metal oxide hollow structures and their gas-sensing properties from the aspects of template size, morphology, and additives. In addition, a gas-sensing mechanism and perspectives are presented.

Synthesis of Nanoporous Metal Oxide Films Using Anodic Oxidation and Their Gas Sensing Properties

  • Suh, Jun Min;Kim, Do Hong;Jang, Ho Won
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.13-20
    • /
    • 2018
  • Gas sensors based on metal oxide semiconductors are used in numerous applications including monitoring indoor air quality and detecting harmful substances like volatile organic compounds. Nanostructures, for example, nanoparticles, nanotubes, nanodomes, and nanofibers have been widely utilized to improve gas sensing properties of metal oxide semiconductors, and this increases the effective surface area, resulting in participation of more target gas molecules in the surface reaction. In the recent times, 1-dimensional (1D) metal oxide nanostructures fabricated using anodic oxidation have attracted great attention due to their high surface-to-volume ratio with large-area uniformity, reproducibility, and capability of synthesis under ambient air and pressure, leading to cost-effectiveness. Here, we provide a brief overview of 1D metal oxide nanostructures fabricated by anodic oxidation and their gas sensing properties. In addition, recent progress on thin film-based anodic oxidation for application in gas sensors is introduced.

Metal nano-wire fabrication and properties (금속 나노와이어의 제조와 특성)

  • Hamrakulov, B.;Kim, In-Soo
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.432-434
    • /
    • 2009
  • Metal nano-wire arrays on Cu-coated seed layers were fabricated by aqueous solution method using sulfate bath at room temperature. The seed layers were coated on Anodic aluminum oxide (AAO) bottom substrates by electrochemical deposition technique, length and diameter of metal nano-wires were dominated by controlling the deposition parameters, such as deposition potential and time, electrolyte temperature. Anodic aluminum oxide (AAO) was used as a template to prepare highly ordered Ni, Fe, Co and Cu multilayer magnetic nano-wire arrays. This template was fabricated with two-step anodizing method, using dissimilar solutions for Al anodizing. The pore of anodic aluminum oxide templates were perfectly hexagonal arranged pore domains. The ordered Ni, Fe, Co and Cu systems nano-wire arrays were characterized by Field Emission Scanning Electron Microscopy (FE-SEM) and Vibrating Sample Magnetometer (VSM). The ordered Ni, Fe, Co and Cu systems nano-wires had different preferred orientation. In addition, these nano-wires showed different magnetization properties under the electrodepositing conditions.

  • PDF