• Title/Summary/Keyword: Metric Invariant

Search Result 108, Processing Time 0.019 seconds

INVARIANT AND SCREEN SEMI-INVARIANT LIGHTLIKE SUBMANIFOLDS OF A METALLIC SEMI-RIEMANNIAN MANIFOLD WITH A QUARTER SYMMETRIC NON-METRIC CONNECTION

  • Jasleen Kaur;Rajinder Kaur
    • Korean Journal of Mathematics
    • /
    • v.32 no.3
    • /
    • pp.407-424
    • /
    • 2024
  • The present work aims to introduce the geometry of invariant and screen semi-invariant lightlike submanifolds of a metallic semi-Riemannian manifold equipped with a quarter symmetric non-metric connection. The study establishes the characterization of integrability and parallelism of the distributions inherent in these submanifolds. Additionally, the conditions for distributions defining totally geodesic foliations on the invariant and screen semi-invariant lightlike submanifolds of metallic semi-Riemannian manifold are specified.

ON SEMI-INVARIANT SUBMANIFOLDS OF A NEARLY KENMOTSU MANIFOLD WITH A QUARTER SYMMETRIC NON-METRIC CONNECTION

  • Ahmad, Mobin;Jun, Jae-Bok
    • Theoretical Mathematics and Pedagogical Mathematics
    • /
    • v.18 no.1
    • /
    • pp.1-11
    • /
    • 2011
  • We define a quarter symmetric non-metric connection in a nearly Ken-motsu manifold and we study semi-invariant submanifolds of a nearly Kenmotsu manifold endowed with a quarter symmetric non-metric connection. Moreover, we discuss the integrability of the distributions on semi-invariant submanifolds of a nearly Kenmotsu manifold with a quarter symmetric non-metric connection.

ON SEMI-INVARIANT SUBMANIFOLDS OF A NEARLY KENMOTSU MANIFOLD WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION

  • Ahmad, Mobin;Jun, Jae-Bok
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.2
    • /
    • pp.257-266
    • /
    • 2010
  • We define a semi-symmetric non-metric connection in a nearly Kenmotsu manifold and we study semi-invariant submanifolds of a nearly Kenmotsu manifold endowed with a semi-symmetric non-metric connection. Moreover, we discuss the integrability of distributions on semi-invariant submanifolds of a nearly Kenmotsu manifold with a semi-symmetric non-metric connection.

DIFFERENTIAL GEOMETRIC PROPERTIES ON THE HEISENBERG GROUP

  • Park, Joon-Sik
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.5
    • /
    • pp.1149-1165
    • /
    • 2016
  • In this paper, we show that there exists no left invariant Riemannian metric h on the Heisenberg group H such that (H, h) is a symmetric Riemannian manifold, and there does not exist any H-invariant metric $\bar{h}$ on the Heisenberg manifold $H/{\Gamma}$ such that the Riemannian connection on ($H/{\Gamma},\bar{h}$) is a Yang-Mills connection. Moreover, we get necessary and sufficient conditions for a group homomorphism of (SU(2), g) with an arbitrarily given left invariant metric g into (H, h) with an arbitrarily given left invariant metric h to be a harmonic and an affine map, and get the totality of harmonic maps of (SU(2), g) into H with a left invariant metric, and then show the fact that any affine map of (SU(2), g) into H, equipped with a properly given left invariant metric on H, does not exist.

HARMONIC HOMOMORPHISMS BETWEEN TWO LIE GROUPS

  • Son, Heui-Sang;Kim, Hyun Woong;Park, Joon-Sik
    • Honam Mathematical Journal
    • /
    • v.38 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • In this paper, we get a complete condition for a group homomorphism of a compact Lie group with an arbitrarily given left invariant Riemannian metric into another Lie group with a left invariant metric to be a harmonic map, and then obtain a necessary and sufficient condition for a group homomorphism of (SU(2), g) with a left invariant metric g into the Heisenberg group (H, $h_0$) to be a harmonic map.

ON SOME PROPERTIES OF SEMI-INVARIANT SUBMANIFOLDS OF A NEARLY TRANS-SASAKIAN MANIFOLD ADMITTING A QUARTER-SYMMETRIC NON-METRIC CONNECTION

  • Ahmad, Mobin;Jun, Jae-Bok;Siddiqi, Mohd Danish
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.1
    • /
    • pp.73-90
    • /
    • 2012
  • We define a quarter-symmetric non-metric connection in a nearly trans-Sasakian manifold and we consider semi-invariant submanifolds of a nearly trans-Sasakian manifold endowed with a quarter-symmetric non-metric connection. Moreover, we also obtain integrability conditions of the distributions on semi-invariant submanifolds.

COMMON FIXED POINT THEOREM AND INVARIANT APPROXIMATION IN COMPLETE LINEAR METRIC SPACES

  • Nashine, Hemant Kumar
    • East Asian mathematical journal
    • /
    • v.28 no.5
    • /
    • pp.533-541
    • /
    • 2012
  • A common fixed point result of Gregus type for subcompatible mappings defined on a complete linear metric space is obtained. The considered underlying space is generalized from Banach space to complete linear metric spaces, which include Banach space and complete metrizable locally convex spaces. Invariant approximation results have also been determined as its application.

Hypersurfaces of an almost r-paracontact Riemannian Manifold Endowed with a Quarter Symmetric Non-metric Connection

  • Ahmad, Mobin;Haseeb, Abdul;Ozgur, Cihan
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.3
    • /
    • pp.533-543
    • /
    • 2009
  • We define a quarter symmetric non-metric connection in an almost r-paracontact Riemannian manifold and we consider invariant, non-invariant and anti-invariant hypersurfaces of an almost r-paracontact Riemannian manifold endowed with a quarter symmetric non-metric connection.

HYPERSURFACES OF ALMOST γ-PARACONTACT RIEMANNIAN MANIFOLD ENDOWED WITH SEMI-SYMMETRIC METRIC CONNECTION

  • Jun, Jae-Bok;Ahmad, Mobin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.5
    • /
    • pp.895-903
    • /
    • 2009
  • We define a semi-symmetric metric connection in an almost $\gamma$-paracontact Riemannian manifold and we consider invariant, non-invariant and anti-invariant hypersurfaces of an almost $\gamma$-paracontact Riemannian manifold endowed with a semi-symmetric metric connection.