• Title/Summary/Keyword: Motion Generator

Search Result 165, Processing Time 0.025 seconds

Design of Trajectory Generator for Performance Evaluation of Navigation Systems

  • Jae Hoon Son;Sang Heon Oh;Dong-Hwan Hwang
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.4
    • /
    • pp.409-421
    • /
    • 2023
  • In order to develop navigation systems, simulators that provide navigation sensors data are required. A trajectory generator that simulates vehicle motion is needed to generate navigation sensors data in the simulator. In this paper, a trajectory generator for evaluating navigation system performance is proposed. The proposed trajectory generator consists of two parts. The first part obtains parameters from the motion scenario file whereas the second part generates position, velocity, and attitude from the parameters. In the proposed trajectory generator six degrees of freedom, halt, climb, turn, accel turn, spiral, combined, and waypoint motions are given as basic motions with parameters. These motions can be combined to generate complex trajectories of the vehicle. Maximum acceleration and jerk for linear motion and maximum angular acceleration and velocity for rotational motion are considered to generate trajectories. In order to show the usefulness of the proposed trajectory generator, trajectories were generated from motion scenario files and the results were observed. The results show that the proposed trajectory generator can accurately simulate complex vehicle motions that can be used to evaluate navigation system performance.

Development of Motion Generator Based on Implementation of Active Impedance (능동 임피던스의 구현에 기초한 운동 발생기의 개발)

  • 이세한;송재복;김용일
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.7
    • /
    • pp.160-166
    • /
    • 1998
  • In this research a 2-dimensional motion generator composed of two linear motors was developed. The inertia, damping and/or stiffness characteristics of the motion generator can be changed on the real-time basis by properly regulating the force generated by the linear motors. That is, active impedance is implemented without actual change in the physical structure of the motion generator. Control of the motor force is carried out by controlling the input currents supplied to the linear motors based on the combination of the PI controller and feedforward controller. This motion generator can be used to measure a kinesthetic sense associated with the human arm and thus to develop the products for which the kinesthetic sense is taken into account.

  • PDF

On the Design of Novel Hybrid Wave Generator (신형식 다기능 조파기 설계)

  • Kim, Hyochul;Oh, Jungkeun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.2
    • /
    • pp.112-120
    • /
    • 2021
  • The novel wave generating system of a wave flume has been devised by utilizing the analytic solution of wave board motion in idealized two dimensional space. The arbitrary oscillation motion of submerged wave board segment has been defined by sinusoidal motion of upper and lower end of the wave board. The analytic solution of the wave board motion has been represented by the solution of board motion due to flap motion and swing motion. Arbitrary oscillation of the board could be specified by determining amplitude, frequency, and the phase lag. A novel hybrid wave generator could be operated not only in piston motion but also in flap or swing motion by selection of control parameter. The wave generator has unique motion enhancing ability by appending flap motion or swing motion to piston motion in wave generation. In addition the hybrid wave generator has advantages in generating high quality wave spectrum of irregular wave in simulating real sea condition.

Starting Mode Analysis of Flat-type Linear Generator for Free-Piston Engine (Free-Piston 엔진용 평판형 선형 발전기를 이용한 기동모드 해석)

  • Kim, Young-Wook;Lim, Jae-Won;Jung, Hyun-Kyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.966-971
    • /
    • 2008
  • Free-piston engine system is a new type energy converter which uses a linear motion of piston by using linear generator. In free-piston engine system, the piston is not connected to a crank-shaft. The major advantages of free-piston engine system are high efficiency and low mechanical loss from the absence of motion conversion devices. Linear generator of free-piston engine system is used as generator and starting motor. In design step, considering of back-emf and detent force characteristics for generating mode and thrust and control characteristics for starting mode is needed. In this research, generating mode of flat-type linear generator and tubular-type linear generator is analyzed by finite element analysis method and starting mode of both type linear generators is analyzed by using capability curve. Capability curve is plotted from electrical parameters of both type linear generator and motion profile is calculated from mechanical parameters.

Kinematic Characteristics of a 4-RRPaRR Type Schönflies Motion Generator (4-RRPaRR구조의 Schönflies Motion Generator 기구학 특성 분석)

  • Kim, Sung-Mok;Yi, Byung-Ju;Kim, Whee-Kuk
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.1
    • /
    • pp.78-85
    • /
    • 2011
  • This article investigates kinematic characteristics of a Sch$\ddot{o}$nflies motion generator which represents a mechanism having translational three Degree-of-Freedom (DOF) and rotational one-DOF motion about a fixed axis. The mechanism consists of the base plate and the moving plate, and four identical limbs connecting them. Each limb employs two revolute joints (RR), one parallelogram (Pa), and two revolute joints (RR) from the base plate to the moving plate. The mechanism is driven by four actuators which are placed on the base plate to minimize dynamic loads. It is shown through simulations that the mechanism can be designed to secure large dexterous workspace and thus has very high potential for actual applications such as haptic devices and high-speed requiring tasks such as pick-and-place operations, riveting, screwing tasks, etc.

Simplified Analytic Solution of Submerged Wave Board Motion and Its Application on the Design of Wave Generator (조파판 수중운동의 근사해석과 조파기 설계에 응용)

  • Kwon, Jongoh;Kim, Hyochul;Lew, Jae-Moon;Oh, Jungkeun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.6
    • /
    • pp.461-469
    • /
    • 2017
  • A segment of the wave board has been expressed as a submerged line segment in the two dimensional wave flume. The lower end of the line segment could be extended to the bottom of the wave flume and the other opposite upper end of the board could be extended to the free surface. It is assumed that the motion of the wave board could be defined by the sinusoidal motion in horizontal direction on either end of the wave board. When the amplitude of sinusoidal motion of the wave board on lower and upper end are equal, the wave board motion could express the horizontally oscillating submerged segment of piston type wave generator. The submerged segment of flap type wave generator also could be expressed by taking the motion amplitude differently for the either end of the board. The pivot point of the segment motion could play a role of hinge point of the flap type wave generator. Simplified analytic solution of oscillating submerged wave board segment in water of finite depth has been derived through the first order perturbation method at two dimensional domain. The case study of the analytic solution has been carried out and it is found out that the solution could be utilized for the design of wave generator with arbitrary shape by linear superposition.

파의 유동을 이용한 등부표용 Motion Generator 연구 개발

  • Yang, Seong-Sik;Kim, Ji-Yeong;Jeong, Hae-Sang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.147-149
    • /
    • 2018
  • 파력발전은 파도의 운동에너지와 위치에너지를 전기에너지로 변환하는 발전 방식을 사용하여 무한한 에너지원으로 친환경적이다. 기존에 있는 파력발전기는 대체적으로 큰 전기에너지를 생산하며 이 에너지를 이용하기 위해서는 큰 시설물과 대형 발전기 등이 중심이 되어있다. 항로표지와 같은 해양안전유도시설은 비교적 큰 에너지 보다는 적은 에너지원을 필요로 하기에 기존의 파력에너지와의 접근이 용이하지 않는다. 별도의 시설물 없이 작은 파도에서도 위치의 변화에 따라 전기에너지를 생산하는 방식의 Motion Generator를 연구하였다.

  • PDF

Extraction of Wave Energy Using the Coupled Heaving Motion of a Circular Cylinder and Linear Electric Generator (원기둥과 선형발전기의 연성 수직운동을 이용한 파 에너지 추출)

  • Cho, Il-Hyoung;Kweon, Hyuck-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.9-16
    • /
    • 2011
  • The feasibility of wave energy extraction from a heaving truncated cylinder and the corresponding response of the linear electric generator (LEG) composed of spring, magnet, and coil has been investigated in the frame of three-dimensional linear potential theory. The heaving motion of a circular cylinder is calculated by means of the matched eigenfunction expansion method. Further, the analytical results are validated by numerical results using the ANSYS AQWA commercial code. By the action of a heaving circular cylinder, the magnet suspended by a spring can slide vertically inside the heaving cylinder. The mechanical power is extracted from the magnet motion relative to the coil/stator which is attached to the cylinder. The coupled ODE of a heaving cylinder and LEG system in waves is derived to obtain the magnet motion relative to a cylinder. To maximize the relative motion of the magnet, both the buoy draft and the LEG system parameters (spring stiffness, damping) should be selected properly for generating the double resonance considering the peak frequency of the target spectrum.

Automatic Motion Generator and Simulator for Biped Walking Robots (이족 보행 로봇을 위한 자동 모션 제너레이터 및 시뮬레이터)

  • 최형식;전창훈;오주환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.948-953
    • /
    • 2004
  • For stable walking of various biped walking robots(BWR), we need to know the kinematics, dynamics and the Zero Moment of Point(ZMP) which are not easy to analyze analytically. In this reason, we developed a simulation program for BWRs composed of 4 degree-of-freedom upper-part body and 12 degree-of-freedom lower-part of the body. To operate the motion simulator for analyzing the kinematics and dynamics of BWES, inputs for the distance between legs, base angle, choice of walking type, gaits, and walking velocity are necessary. As a result, if stability condition is satisfied by the simulation, angle data for each actuator are generated automatically, and the data are transmitted to BWRS and then, they are actuated by the motion data. Finally, we validate the performance of the proposed motion simulator by applying it to a constructed small sized BWR.

  • PDF

Convolution-based Desired Trajectory Generation Method Considering System Specifications (시스템 사양을 고려한 컨볼루션 기반 목표궤적 생성 방법)

  • Lee, Geon;Choi, Young-Jin;Kim, Jin-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.10
    • /
    • pp.997-1005
    • /
    • 2010
  • Most motion control systems consist of a desired trajectory generator, a motion controller such as a conventional PID controller, and a plant to be controlled. The desired trajectory generator as well as the motion controller is very important to achieve a good tracking performance. Especially, if the desired trajectory is generated actively utilizing the maximum velocity, acceleration, jerk and snap as given system specifications, the tracking performance would be better. For this, we make use of the properties of convolution operator in order to generate a smooth (S-curve) trajectory satisfying the system specifications. Also, the proposed trajectory generation method is extended to more general cases with arbitrary initial and terminal conditions. In addition, the suggested trajectory generator can be easily realized for real-time implementation. Finally, the effectiveness of the suggested method is shown through numerical simulations.