• Title/Summary/Keyword: PHWR

Search Result 120, Processing Time 0.025 seconds

A Numerical Model for Predicting the Radial Power Profile in CANDU-PHWR Fuel Pellet (CANDU-PHWR 핵연료 소결체의 반경방향 출력분포 수치모형)

  • Woan Hwang;Suk, Ho-Chun;Jae, Won-Mok
    • Nuclear Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.444-455
    • /
    • 1991
  • An accurate and fast running NEDAR model for calculating radial power profile throughout fuel life in both solid and annular pellets for existing and advanced CANDU-PHWR-fuel was developed in this work. This model contains resultant flux depression equations and neutron depression data tables which have been developed for CANDU-PHWR fuel of pellet with the diameter 8.0 to 19.5 mm and enrichment 0.71-6.0 wt % U-235, over a bumup range of 0 to 840 MWh /kgU (35000 MWD/T). In order to obtain the neutron flux distribution in the fuel pellet, the CE-HAMMER physics code was run for a neutron flux spectrum appropriate to a CANDU-PHWR to give predictions of radial power profile for several ranges of fuel design parameters. The results, which were calculated by the CE-HAMMER physics code, were fitted to an equation which is solved in terms of Bessel and exponential functions in order to obtain the parameters, $textsc{k}$, $\beta$ and λ in the resultant equation. The present NEDAR model produce a radial profile which, when normalized to unity at the pellet surface, is slightly higher than the profile of the original ELESIM data table. The predictions of the fission gas release by KAFEPA-NEDAR are in slightly better agreement with the experiments than those of ELESIM. The NEDAR model described in this study has been shown to provide an effective, reliable, and accurate method for determining radial power profiles in CANDU-PHWR fuel rods without incurring a significant increase in computing time.

  • PDF

Cost Comparison of PWR and PHWR Nuclear Power Plants in Korea

  • Kim, Chang-Hyo;Chung, Chang-Hyun;So, Dong-Sub
    • Nuclear Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.263-274
    • /
    • 1979
  • A statistical approach is used to investigate the relative economic advantages of pressurized water reactor (PWR) and pressurized heavy water reactor (PHWR-CANDU) nuclear power plants for hypothetical 900Mwe systems with the throwaway fuel cycle to be built in the Republic of Korea. Power cost is decomposed into the cost components related to the plant capital, operation and maintenance, working capital requirements and fuel cycle operation. The calculation of construction cost is performed with the modified version of computer code ORCOST, and the modified POWERCO-50 is used to evaluate the cost components. Most of economic parameters are treated as statistical variables, each being given with a certain range. Through a random sampling procedures. the probability histograms on unit plant construction costs and power generating costs are obtained. The power cost probability histograms of the PWR and the PHWR plants overlap considerably, and the power costs of two systems appear to be almost same with the PHWR power cost being 0.4mil1/kwh lower compared with 39.4 mills/kwh for the PWR plant (July 1986 US-dollars). When a construction period of PHWR plant is longer by one year than that of PWR plant, there is no difference in the unit power cost of two plants. This comparison leads to no definite conclusion on the cost advantage of the PWR plant versus the PHWR plant. We conclude that the selection issue of nuclear power plants in Korea still remains an open question and that future effort to solve this question should be made toward economic quantification of those factors such as technology transfer and localization.

  • PDF

EVALUATION OF HEAT-FLUX DISTRIBUTION AT THE INNER AND OUTER REACTOR VESSEL WALLS UNDER THE IN-VESSEL RETENTION THROUGH EXTERNAL REACTOR VESSEL COOLING CONDITION

  • JUNG, JAEHOON;AN, SANG MO;HA, KWANG SOON;KIM, HWAN YEOL
    • Nuclear Engineering and Technology
    • /
    • v.47 no.1
    • /
    • pp.66-73
    • /
    • 2015
  • Background: A numerical simulation was carried out to investigate the difference between internal and external heat-flux distributions at the reactor vessel wall under in-vessel retention through external reactor vessel cooling (IVR-ERVC). Methods: Total loss of feed water, station blackout, and large break loss of coolant accidents were selected as the severe accident scenarios, and a transient analysis using the element-birth-and-death technique was conducted to reflect the vessel erosion (vessel wall thickness change) effect. Results: It was found that the maximum heat flux at the focusing region was decreased at least 10% when considering the two-dimensional heat conduction at the reactor vessel wall. Conclusion: The results show that a higher thermal margin for the IVR-ERVC strategy can be achieved in the focusing region. In addition, sensitivity studies revealed that the heat flux and reactor vessel thickness are dominantly affected by the molten corium pool formation according to the accident scenario.

Burst criterion for Indian PHWR fuel cladding under simulated loss-of-coolant accident

  • Suman, Siddharth
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1525-1531
    • /
    • 2019
  • The indigenous nuclear power program of India is based mainly on a series of Pressurised Heavy Water Reactors (PHWRs). A burst correlation for Indian PHWR fuel claddings has been developed and empirical burst parameters are determined. The burst correlation is developed from data available in literature for single-rod transient burst tests performed on Indian PHWR claddings in inert environment. The heating rate and internal overpressure were in the range of 7 K/s-73 K/s and 3 bar-80 bar, respectively, during the burst tests. A burst criterion for inert environment, which assumes that deformation is controlled by steady state creep, has been developed using the empirical burst parameters. The burst criterion has been validated with experimental data reported in literature and the prediction of burst parameters is in a fairly good agreement with the experimental data. The burst criterion model reveals that increasing the heating rate increases the burst temperature. However, at higher heating rates, burst strain is decreased considerably and an early rupture of the claddings without undergoing considerable ballooning is observed. It is also found that the degree of anisotropy has significant influence on the burst temperature and burst strain. With increasing degree of anisotropy, the burst temperature for claddings increases but there is a decrease in the burst strain. The effect of anisotropy in the ${\alpha}$-phase is carried over to ${\alpha}+{\beta}$-phase and its effect on the burst strain in the ${\alpha}+{\beta}$-phase too can be observed.

Evaluation of dissolution characteristics of magnetite in an inorganic acidic solution for the PHWR system decontamination

  • Ayantika Banerjee ;Wangkyu Choi ;Byung-Seon Choi ;Sangyoon Park;Seon-Byeong Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1892-1900
    • /
    • 2023
  • A protective oxide layer forms on the material surfaces of a Nuclear Power Plant during operation due to high temperature. These oxides can host radionuclides, the activated corrosion products of fission products, resulting in decommissioning workers' exposure. These deposited oxides are iron oxides such as Fe3O4, Fe2O3 and mixed ferrites such as nickel ferrites, chromium ferrites, and cobalt ferrites. Developing a new chemical decontamination technology for domestic CANDU-type reactors is challenging due to variations in oxide compositions from different structural materials in a Pressurized Water Reactor (PWR) system. The Korea Atomic Energy Research Institute (KAERI) has already developed a chemical decontamination process for PWRs called 'HyBRID' (Hydrazine-Based Reductive metal Ion Decontamination) that does not use organic acids or organic chelating agents at all. As the first step to developing a new chemical decontamination technology for the Pressurized Heavy Water Reactor (PHWR) system, we investigated magnetite dissolution behaviors in various HyBRID inorganic acidic solutions to assess their applicability to the PHWR reactor system, which forms a thicker oxide film.

RESEARCH EFFORTS FOR THE RESOLUTION OF HYDROGEN RISK

  • HONG, SEONG-WAN;KIM, JONGTAE;KANG, HYUNG-SEOK;NA, YOUNG-SU;SONG, JINHO
    • Nuclear Engineering and Technology
    • /
    • v.47 no.1
    • /
    • pp.33-46
    • /
    • 2015
  • During the past 10 years, the Korea Atomic Energy Research Institute (KAERI) has performed a study to control hydrogen gas in the containment of the nuclear power plants. Before the Fukushima accident, analytical activities for gas distribution analysis in experiments and plants were primarily conducted using a multidimensional code: the GASFLOW. After the Fukushima accident, the COM3D code, which can simulate a multidimensional hydrogen explosion, was introduced in 2013 to complete the multidimensional hydrogen analysis system. The code validation efforts of the multidimensional codes of the GASFLOW and the COM3D have continued to increase confidence in the use of codes using several international experimental data. The OpenFOAM has been preliminarily evaluated for APR1400 containment, based on experience from coded validation and the analysis of hydrogen distribution and explosion using the multidimensional codes, the GASFLOW and the COM3D. Hydrogen safety in nuclear power has become a much more important issue after the Fukushima event in which hydrogen explosions occurred. The KAERI is preparing a large-scale test that can be used to validate the performance of domestic passive autocatalytic recombiners (PARs) and can provide data for the validation of the severe accident code being developed in Korea.

Hydride Embrittlement Behavior at the LBB Evaluation of PHWR Pressure Tube (중수로 압력관 LBB 평가에서의 수소화물에 의한 취화거동)

  • Oh, Dong-Joon;Kim, Young-Suk
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1192-1197
    • /
    • 2003
  • The aim of this study is to investigate the hydride embrittlement when the LBB evaluation is carried out for the integrity of PHWR Pressure Tubes. The transverse tensile and CCT tests were performed at three hydrogen concentrations while the test temperatures were changed (RT to $300^{\circ}C$). The specimens were directly machined from the pressure tube retaining original curvature. Both the transverse tensile and the fracture toughness tests showed the hydrogen embrittlement clearly at RT but this phenomenon was disappeared while the test temperature arrived over $250^{\circ}C$. Using the DHC test results, the CCL and LBB time were calculated and compared. The hydride embrittlement behavior at the LBB evaluation was definitely showed.

  • PDF

Seismic Analysis of Spent Fuel Storage Structures for PHWR Plant (중수로형 핵연료 저장대의 내진해석 방법)

  • 신태명
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.338-344
    • /
    • 2003
  • The seismic analysis method of spent fuel storage structures for PHWR plant is introduced in comparison with the method for PWR plant. Investigating the structural characteristics of the storage structures, the former is vertically stacked fuel storage trays, while the latter is welded honeycomb type structure. However, as both structures are submerged and free standing, the analysis methods to anticipate the seismic response of both structures are complicated. For the better estimation of actual seismic response, how to model the dynamic properties and the structural behaviour is the key issue. In this paper, the overall procedures of the seismic modelling and stability check for seismic sliding and overturning of the two different storage structures are discussed in the viewpoint of analysis reliability

  • PDF

Effect of Hydride of the PHWR Pressure Tube on the LBB Evaluation (중수로 압력관의 수화물이 LBB평가에 미치는 영향)

  • Oh, Dong-Joon;Kim, Young-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.5
    • /
    • pp.610-616
    • /
    • 2004
  • The aim of this study was to investigate the hydride embrittlement when the LBB evaluation was carried out for the integrity of PHWR Pressure Tubes. The transverse tensile and CCT toughness tests were performed at three hydrogen concentrations while the test temperatures were changed (RT to 30$0^{\circ}C$). Both the transverse tensile and the fracture toughness tests showed the hydrogen embitterment clearly at RT but this phenomenon was disappeared while the test temperature arrived at 25$0^{\circ}C$. Using the DHC test results, the CCL and LBB time were calculated and compared. The hydride embrittlement at the LBB evaluation made the LBB time short definedly. If the operating temperature, DHCV and LBB deterministic parameters such as A and m were known, LBB time could be estimated without the calculation of CCL.

Development of Fault Diagnosis System for Ram in PHWR Plant (램집합체 이상진단 시스템의 개발)

  • 변승현;조병학;신창훈;양장범
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1319-1322
    • /
    • 2004
  • In this paper, a fault diagnosis system for ram in PHWR plant is developed. The developed diagnosis system can detect the ram stuck phenomena due to increased ball wear and damage in ball nut using discrete wavelet transform before the ram is stuck. The validity of developed diagnosis system is shown via experiments using ball nut characteristic test equipment.

  • PDF