• 제목/요약/키워드: PID-Self Tuning control

검색결과 96건 처리시간 0.024초

GPC기법을 이용한 자기동조 PID제어기 설계 (Design of Self-Tuning PID Controller Using GPC Method)

  • 윤강섭;이만형
    • 한국정밀공학회지
    • /
    • 제13권5호
    • /
    • pp.139-147
    • /
    • 1996
  • PID control has been widely used for real control systems. Particularly, there are many researches on control schemes of tuning PID gains. However, to the best of our knowledge, there is no result for discrete-time systems with unknown time-delay and unknown system parameters. On the other hand, Generalized predictive control has been reported as a useful self-tuning control technique for systems with unknown time-delay. So, in this study, based on minimization of a GPC criterion, we present a self-tuning PID control algorithm for unknown papameters and unknown time-delay system. A numerical simulation was presented to illustrate the effectiveness of this method.

  • PDF

Self-Tuning PID Controller Based on PLC

  • Phonphithak, A.;Pannil, P.;Suesut, T.;Masuchun, R.;Julsereewong, P.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.272-276
    • /
    • 2004
  • The conventional PID (Proportional-Integral-Derivative) control technique is widely used for the process control in many industries since it is simple in structure and provides the good response. Nowadays, this control technique has been developed on the Programmable Logic Controller (PLC) to use for the process control loop. However, using this technique is difficult when tuning the PID parameters ($K_p$, $T_i$ and $T_d$) to achieve the best response. Moreover, trial-and-error procedure along with the operator experiences are required to obtain the best results when tuning the PID controller parameters. This paper proposes the self-tuning PID controller based on PLC for the process control in the industries. The proposed self-tuning PID controller uses the PLC-based PID structures to control the process production. The proposed PID tuning utilizes the PLC to synthesize and analyze controller parameter as well as to tune for appropriate parameters using Dahlin method and extrapolation. Experimental results using a self-tuning PID controller to control temperature of the oven show that the controller developed is capable of controlling the process very effectively and provides a good response.

  • PDF

Position Control of Shape Memory Alloy Actuators Using Self Tuning Fuzzy PID Controller

  • Ahn Kyoung-Kwan;Nguyen Bao Kha
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권6호
    • /
    • pp.756-762
    • /
    • 2006
  • Shape Memory Alloy(SMA) actuators, which have the ability to return to a predetermined shape when heated, have many potential applications such as aeronautics, surgical tools, robotics and so on. Although the conventional PID controller can be used with slow response systems, there has been limited success in precise motion control of SMA actuators, since the systems are disturbed by unknown factors beside their inherent nonlinear hysteresis and changes in the surrounding environment of the systems. This paper presents a new development of a SMA position control system by using a self-tuning fuzzy PID controller. This control algorithm is used by tuning the parameters of the PID controller thereby integrating fuzzy inference and producing a fuzzy adaptive PID controller, which can then be used to improve the control performance of nonlinear systems. The experimental results of position control of SMA actuators using conventional and self-tuning fuzzy PID controllers are both included in this paper.

PID-자기동조 제어방식에 의한 DC 서보 전동기의 속도제어 (The Speed Control of a DC Servo Motor by the PID Self Tuning Control Method)

  • 조현섭;구기준
    • 한국산학기술학회논문지
    • /
    • 제9권6호
    • /
    • pp.1560-1564
    • /
    • 2008
  • 산업 자동화의 고정밀도에 따라 직류 전동기는 강인제어가 요구되고 있다. 하지만 PID 제어기를 갖는 전동기 제어 시스템이 부하 외란의 영향을 받게되면 제어 시스템의 강인제어는 어렵게 된다. 이에 대한 보완적인 한 방법으로 본 논문에서는 전동기 제어시스템을 위한 PID-자기동조 제어기법을 제시하였다. 만약 오차가 구속영역 내에 있고, 시스템이 안정한 상태에 있다면 자기동조는 사용되지 않고 PID 제어기만 동작한다. 자기동조 제어기는 오차가 구속 경계에 도달하게 되면 오차를 구속 영역내로 들어가도록 제어를 시작한다. PID-자기동조 제어 시스템의 오차가 시스템 설계자의 허용한도 내에서 유지되고 전체적으로 안정함을 증명하였다.

GPC를 이용한 자기동조 PID 제어기 (Self-tuning PID-controller based on GPC)

  • 유연운;김종만;이창구;김성중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.188-193
    • /
    • 1992
  • The PID controllers which is widely used in the process industry are poorly damped when the dynamic process contains significant dead time or when there are random disturbances acting on the plant. GPC is known to be more superior than conventional self-tuning algorithm in overcoming above problem and prior choice of model order. In this paper, we propose the method which determine the parameter of PID controller from minimization of GPC criterion. The controller has emplicit scheme which is comprised of parameter estimation and PID control design. Simulation results show the performance of the proposed self-tuning PID controller.

  • PDF

자기조정 퍼지 PID제어기를 이용한 전력시스템의 부하주파수 제어 (Load Frequency Control of Power System using a Self-tuning Fuzzy PID Controller)

  • 이준탁
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권1호
    • /
    • pp.40-46
    • /
    • 1999
  • A self-tuning FPID(Fuzzy Proportional Intergral Derivative) controller fo load frequency control of 2-area power systemis proposed in this paper. The paramters of the proposed self-tuning FPID controller are self-tuned by the proposed fuzzy inference technique. Therefore in this paper the fuzzy inference technique of PID gains using PSGM(Product Sum Gravity Method) is presented and is applied to the load frequency control of 2-area power system. The computer simulation results show that the proposed controller give better more control characteristics than convention-al PID, FLC under load changes.

  • PDF

이동로봇 선회를 위한 Type-2 Fuzzy Self-Tuning PID 제어기 설계 및 조향각 제어 (Type-2 Fuzzy Self-Tuning PID Controller Design and Steering Angle Control for Mobile Robot Turning)

  • 박상혁;최원혁;지민석
    • 한국항행학회논문지
    • /
    • 제20권3호
    • /
    • pp.226-231
    • /
    • 2016
  • 이동로봇의 제어는 로봇 분야에 있어 중요한 이슈이다. 이동로봇의 자율주행은 다양한 작업 환경에서 중시되고 있다. 자율 주행을 위해 이동로봇은 장애물을 감지, 회피하며 지능시스템을 도입한 제어 방식들을 사용해 충돌회피의 성능을 보완하는 연구가 활발히 진행되고 있다. 본 논문에서는 이동 로봇의 기구학적 모델을 분석하고 조향각 제어를 위한 type-2 fuzzy self-tuning PID 제어기를 설계하였다. Type-2 fuzzy 제어기는 type-1 fuzzy 제어기와 달리 복수 개의 값을 가지므로 언어표현의 모호함의 자유도가 높다. 본 논문에서는 설계된 제어기와 기존의 PID 제어기, type-1 fuzzy self-tuning PID 제어기를 비교하기 위한 방법으로 MATLAB Simulink를 사용하여 시뮬레이션을 하였다. 시뮬레이션 비교 결과 기존의 PID제어기와 type-1 fuzzy self-tuning PID 제어기의 성능보다 type-2 fuzzy self-tuning PID 제어기의 성능이 우수하다는 것을 확인하였다.

GPC 기법을 이용한 자기동조 PID 제어기 설계

  • 윤강섭;이만형
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 춘계학술대회 논문집
    • /
    • pp.326-329
    • /
    • 1995
  • PID control has been widely used for real control system Further, there are muchreasearches on control schemes of tuning PID gains. However, there is no results for discrete-time systems with unknown time-dealy and unknown system parameters. On the other hand, Generalized predictive control has been reported as a useful self-tuning control technique for systems with unknown time-delay. So, in this study, based on minimization of a GPC criterion, we present a self-tuning PID control algorithm for unknown parameters and unknown tiem-delay system. A numerical simulation was presented to illuatrate the effectiveness of this method.

  • PDF

A Fuzzy Self-Tuning PID Controller with a Derivative Filter for Power Control in Induction Heating Systems

  • Chakrabarti, Arijit;Chakraborty, Avijit;Sadhu, Pradip Kumar
    • Journal of Power Electronics
    • /
    • 제17권6호
    • /
    • pp.1577-1586
    • /
    • 2017
  • The Proportional-Integral-Derivative (PID) controller is still the most widespread control strategy in the industry. PID controllers have gained popularity due to their simplicity, better control performance and excellent robustness to uncertainties. This paper presents the optimal tuning of a PID controller for domestic induction heating systems with a series resonant inverter for controlling the induction heating power. The objective is to design a stable and superior control system by tuning the PID controller with a derivative filter (PIDF) through Fuzzy logic. The paper also compares the performance of the Fuzzy PIDF controller with that of a Ziegler-Nichols PID controller and a fine-tuned PID controller with a derivative filter. The system modeling and controllers are simulated in MATLAB/SIMULINK. The results obtained show the effectiveness and superiority of the proposed Fuzzy PID controller with a derivative filter.

Intelligent Fuzzy PID 제어 알고리즘을 이용한 실시간 OS 기반 복강경 수술 로봇의 위치 제어 성능 강화에 관한 연구 (A Study of Position Control Performance Enhancement in a Real-Time OS Based Laparoscopic Surgery Robot Using Intelligent Fuzzy PID Control Algorithm)

  • 송승준;박준우;신정욱;이덕희;김연호;최재순
    • 전기학회논문지
    • /
    • 제57권3호
    • /
    • pp.518-526
    • /
    • 2008
  • The fuzzy self-tuning PID controller is a PID controller with a fuzzy logic mechanism for tuning its gains on-line. In this structure, the proportional, integral and derivative gains are tuned on-line with respect to the change of the output of system under control. This paper deals with two types of fuzzy self-tuning PID controllers, rule-based fuzzy PID controller and learning fuzzy PID controller. As a medical application of fuzzy PID controller, the proposed controllers were implemented and evaluated in a laparoscopic surgery robot system. The proposed fuzzy PID structures maintain similar performance as conventional PID controller, and enhance the position tracking performance over wide range of varying input. For precise approximation, the fuzzy PID controller was realized using the linear reasoning method, a type of product-sum-gravity method. The proposed controllers were compared with conventional PID controller without fuzzy gain tuning and was proved to have better performance in the experiment.