Journal of the Korean Society for Precision Engineering
/
v.17
no.4
/
pp.121-128
/
2000
In this paper, the control algorithm fur an autonomous vehicle is studied and applied to an actual 2 wheel-driven vehicle system. In order to control a nonholonomic system, the kinematic model for an autonomous vehicle is constructed by relative velocity relationship about the virtual point at distance from the vehicle's frame. And the optimal controller that based on the kinematic model is operated on purpose to track a reference vehicle's path. The actual system is designed with named 'HYAVI' and the system controller is applied. Because all the results of simulation don't satisfy the driving conditions of HYAVI, a reformed control algorithm that satisfies an actual autonomous vehicle is applied at HYAVI. At the results of actual experiments, the path tracking works very well by the reformed control algorithm. An autonomous vehicle that applied this control algorithm can be easily used for a path generation algorithm.
Journal of Institute of Control, Robotics and Systems
/
v.20
no.2
/
pp.138-142
/
2014
This research presents an A* based algorithm which can be applied to Unmanned Ground Vehicle self-navigation in order to make the driving path smoother. Based on the grid map, A* algorithm generated the path by using straight lines. However, in this situation, the knee points, which are the connection points when vehicle changed orientation, are created. These points make Unmanned Ground Vehicle continuous navigation unsuitable. Therefore, in this paper, B-spline curve function is applied to transform the path transfer into curve type. And because the location of the control point has influenced the B-spline curve, the optimal control selection algorithm is proposed. Also, the optimal path tracking speed can be calculated through the curvature radius of the B-spline curve. Finally, based on this algorithm, a path created program is applied to the path results of the A* algorithm and this B-spline curve algorithm. After that, the final path results are compared through the simulation.
Journal of Korea Society of Digital Industry and Information Management
/
v.10
no.3
/
pp.197-205
/
2014
In applications of adaptive noise control or active noise control, the presence of a transfer function in the secondary path following the adaptive controller and the error path, been shown to generally degrade the performance of the Least Mean Square (LMS) algorithm. Thus, the convergence rate is lowered, the residual power is increased, and the algorithm can become unstable. In general, in order to solve these problems, the filtered-x LMS (FX-LMS) type algorithms can be used. But these algorithms have slow convergence speed and weakness in the environment that the secondary path and error path are varied. Therefore, I present the new algorithm called the "Bi-directional Filtered-x (BFX) LMS" algorithm with nearly equal computation complexity. Through experimental study, the proposed BFX-LMS algorithm has better convergence speed and better performance than the conventional FX-LMS algorithm, especially when the secondary path or error path is varied and the impulsive disturbance is flow in.
A robot education system by emulation based on Web can be efficiently used for understanding concept of robot assembly practice and control mechanism of robot by control programming. It is important to predict the path of the line tracer robot which has to be decided by the robot. Shortest Path Algorithm is a well known algorithm which searches the most efficient path between the start node and the end node. There are two related typical algorithms. Dijkstra Algorithm searches the shortest path tree from a node to the rest of the other nodes. $A^*$ Algorithm searches the shortest paths among all nodes. The delay time caused by turning the direction of navigation for the line tracer robot at the crossroads can give big differences to the travel time of the robot. So we need an efficient path determine algorithm which can solve this problem. Thus, It is necessary to analyze the overhead of changing direction of robot at multi-linked node to determine the next direction for efficient routings. In this paper, we reflect the real delay time of directional changing from the real robot. A speed based Dijkstra algorithm is proposed and compared with the previous ones to analyze the performance.
Journal of the Korean Operations Research and Management Science Society
/
v.18
no.2
/
pp.23-43
/
1993
This paper employs fuzzy variables instead of deterministic variables for job times in a project network. A fuzzy variable has its value restricted by a possibility distribution. This paper utilizes the triangular possibility distribution which has three estimated times. That is normal, resonable, and crash job times. This paper develops a fuzzy k-longest path algorithm, by utilizing the k-longest path algorithm. This algorithm will be useful to control the project the project network by considering the project completion possibility.
Journal of Institute of Control, Robotics and Systems
/
v.17
no.8
/
pp.843-850
/
2011
In this paper, an effective path generation algorithm for obstacle avoidance producing small amount of steering action as possible is proposed. The proposed path generation algorithm can reduce unnecessary steering because of the small lateral changes in generated waypoints when UGV (Unmanned Ground Vehicle) encounters obstacles during its waypoint navigation. To verify this, the proposed algorithm and $A^*$ algorithm are analyzed through the simulation. The proposed algorithm shows good performance in terms of lateral changes in the generated waypoint, steering changes of the vehicle while driving and execution speed of the algorithm. Especially, due to the fast execution speed of the algorithm, the obstacles that encounter suddenly in front of the vehicle within short range can be avoided. This algorithm consider the waypoint navigation only. Therefore, in certain situations, the algorithm may generate the wrong path. In this case, a general path generation algorithm like $A^*$ is used instead. However, these special cases happen very rare during the vehicle waypoint navigation, so the proposed algorithm can be applied to most of the waypoint navigation for the unmanned ground vehicle.
Proceedings of the Korean Society of Precision Engineering Conference
/
1996.11a
/
pp.283-287
/
1996
The exhaust noise reduction of automobile with the active muffler is experimentally investigated. The control algorithm is the filtered-x LMS algorithm and the inverse algorithm with the adaptive line enhancer. Also, the control efficiency is increased with synthesized second harmonic engine frequency. In the experiment, the active muffler is applied to the end of exhaust system in automobile and the control with on-line secondary path modeling method(inverse algorithm) is compared the control of off-line secondary path modeling method. As secondary path transfer functions are changed, the experimental results show that the control performance with on-line method is more efficient than that with off-line method in the exhaust noise reduction of automobile.
Journal of Institute of Control, Robotics and Systems
/
v.20
no.2
/
pp.211-217
/
2014
This paper addresses an algorithm of path planning for autonomous driving of a ground vehicle in waypoint navigation. The proposed algorithm is flexible in utilization under a large GPS positioning error and generates collision-free multiple paths while pursuing minimum traveling time. An optimal path reduces inefficient steering by minimizing lateral changes in generated waypoints along a path. Simulation results compare the proposed algorithm with the A* algorithm by manipulation of the steering wheel and traveling time, and show that the proposed algorithm realizes real-time obstacle avoidance by quick processing of path generation, and minimum time traveling by producing paths with small lateral changes while overcoming the very irregular positioning error from the GPS.
Path planning is an important task for optimal motion of a robot in structured or unstructured environment. The goal of this paper is to plan the shortest collision-free path in 3D, when a robot is navigated to pick up some tools or to repair some parts from various locations. To accomplish the goal of this paper, the Path Coordinator is proposed to have the capabilities of an obstacle avoidance strategy[3] and a traveling salesman problem strategy(TSP)[23]. The obstacle avoidance strategy is to plan the shortest collision-free path between each pair of n locations in 2D or in 3D. The TSP strategy is to compute a minimal system cost of a tour that is defined as a closed path navigating each location exactly once. The TSP strategy can be implemented by the Neural Network. The obstacle avoidance strategy in 2D can be implemented by the VGraph Algorithm. However, the VGraph Algorithm is not useful in 3D, because it can't compute the global optimality in 3D. Thus, the Path Coordinator is proposed to solve this problem, having the capabilities of selecting the optimal edges by the modified Genetic Algorithm[21] and computing the optimal nodes along the optimal edges by the Recursive Compensation Algorithm[5].
This paper presents driving path estimation algorithm for adaptive cruise control system and advanced emergency braking system using multi-sensor fusion. Through data collection, yaw rate filtering based road curvature and vision sensor road curvature characteristics are analyzed. Yaw rate filtering based road curvature and vision sensor road curvature are fused into the one curvature by weighting factor which are considering characteristics of each curvature data. The proposed driving path estimation algorithm has been investigated via simulation performed on a vehicle package Carsim and Matlab/Simulink. It has been shown via simulation that the proposed driving path estimation algorithm improves primary target detection rate.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.