• Title, Summary, Keyword: Pulsed Proton Beam

Search Result 5, Processing Time 0.022 seconds

Design Study for Pulsed Proton Beam Generation

  • Kim, Han-Sung;Kwon, Hyeok-Jung;Seol, Kyung-Tae;Cho, Yong-Sub
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.189-199
    • /
    • 2016
  • Fast neutrons with a broad energy spectrum, with which it is possible to evaluate nuclear data for various research fields such as medical applications and the development of fusion reactors, can be generated by irradiating proton beams on target materials such as beryllium. To generate short-pulse proton beam, we adopted a deflector and slit system. In a simple deflector with slit system, most of the proton beam is blocked by the slit, especially when the beam pulse width is short. Therefore, the available beam current is very low, which results in low neutron flux. In this study, we proposed beam modulation using a buncher cavity to increase the available beam current. The ideal field pattern for the buncher cavity is sawtooth. To make the field pattern similar to a sawtooth waveform, a multiharmonic buncher was adopted. The design process for the multiharmonic buncher includes a beam dynamics calculation and three-dimensional electromagnetic simulation. In addition to the system design for pulsed proton generation, a test bench with a microwave ion source is under preparation to test the performance of the system. The design study results concerning the pulsed proton beam generation and the test bench preparation with some preliminary test results are presented in this paper.

Design of the 100 MeV Proton-Beam Target System for the Pulsed Neutron Source at the KOMAC

  • Lee, Pilsoo
    • Journal of the Korean Physical Society
    • /
    • v.73 no.8
    • /
    • pp.1068-1072
    • /
    • 2018
  • Among various types of neutron generators, the spallation neutron source is a unique way to generate high-energy and high-flux neutrons in a laboratory. The advantages of the spallation neutron source over other types of generators have been recognized; as a result, several spallation neutron facilities are in operation to provide users with high-quality neutron beams. For satisfying the demand for such a neutron facility in Korea, we have launched a project to construct a spallation neutron source facility by fully utilizing the high-power proton linear accelerator at the Korea Multi-purpose Accelerator Complex (KOMAC) of the Korea Atomic Energy Research Institute (KAERI). In the facility, high-energy spallation neutrons can be generated by bombarding a thick metal target with a 100-MeV, 20-mA pulsed proton beam. In the present study, a neutron target system involving a target, moderator, and reflector (TMR) has been studied through extensive Monte-Carlo simulations. The detailed design of the TMR for generating thermal neutrons and guiding them to the experimental hall will be presented. Here, we present the result of numerical studies and the details of fundamental instruments, and we discuss future plans for the construction of the spallation neutron source facility at the KOMAC.

Feasibility Study on the Use of a Superconducting Synchrocyclotron and Electron Beam Ion Source for Heavy-Ion Therapy

  • Kim, Jongwon
    • Journal of the Korean Physical Society
    • /
    • v.73 no.8
    • /
    • pp.1088-1092
    • /
    • 2018
  • A superconducting synchrocyclotron was suggested for proton therapy by H. Blosser of Michigan State University in '80, and it became a major machine for therapy cyclotron vendors because of its compact design with high magnetic fields of up to 9 T utilizing a $Nb_3Sn$ superconductor. Compared to an isochronous cyclotron, its dependence on the precision and the stability of the magnetic field is lessened. A low-beam current is a weak point due to pulsing of both radio-frequency (rf) and magnetic fields. However, that is of no concern for protons with the use of high-current pulsed sources. For heavy-ion therapy, the ion source can be an electron beam ion source (EBIS), which can produce high-current, fully charge-stripped and pulsed heavy ions. A study was carried out to evaluate a feasible design of superconducting synchrocyclotron system. If the low cost of a synchrocyclotron and well-advanced superconducting technology are considered, superconducting synchrocyclotron combined with an EBIS can be a legitimate candidate for a next-generation heavy-ion therapy machine.

Benchmarks of subcriticality in accelerator-driven system at Kyoto University Critical Assembly

  • Pyeon, Cheol Ho;Yamanaka, Masao;Kim, Song-Hyun;Vu, Thanh-Mai;Endo, Tomohiro;Van Rooijen, Willem Fredrik G.;Chiba, Go
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1234-1239
    • /
    • 2017
  • Basic research on the accelerator-driven system is conducted by combining $^{235}U$-fueled and $^{232}Th$-loaded cores in the Kyoto University Critical Assembly with the pulsed neutron generator (14 MeV neutrons) and the proton beam accelerator (100 MeV protons with a heavy metal target). The results of experimental subcriticality are presented with a wide range of subcriticality level between near critical and 10,000 pcm, as obtained by the pulsed neutron source method, the Feynman-${\alpha}$ method, and the neutron source multiplication method.

Measurement of Neutron Capture Gamma-ray Spectrum of Natural Gold in the keV Energy Region

  • Lee, Jae-Hong;Lee, Sam-Yol;Lee, Sang-Bock;Lee, Jun-Haeng;Jin, Gye-Hwan
    • Journal of the Korean Society of Radiology
    • /
    • v.1 no.1
    • /
    • pp.45-49
    • /
    • 2007
  • keV-neutron capture gamma-ray spectrum of $^{197}Au$(natural gold) sample have been measured in neutron energy range from 10 to 90 keV using the 3-MV pelletron accelerator of the Research Laboratory for Nuclear Reactors at the Tokyo Institute of Technology. Pulsed keV neutrons were produced from the $^7Li(p,n)^7Be$ reaction by bombarding on the $^7Li$ target with the 1.5-ns bunched proton beam. The incident neutron spectrum on the Au sample was measured by a $^6Li$-glass scintillation detector and TOF method. Capture gamma-rays from Au sample were measured by anti-Compton NaI(TI) spectrometer. Five average neutron energy regions were selected to obtain the neutron capture spectrum. Several gamma-ray peaks in the spectrum were found in the present experiment.

  • PDF